Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altopthsn Unicode version

Theorem altopthsn 25522
Description: Two alternate ordered pairs are equal iff the singletons of their respective elements are equal. Note that this holds regardless of sethood of any of the elements. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
altopthsn  |-  ( << A ,  B >>  =  << C ,  D >>  <->  ( { A }  =  { C }  /\  { B }  =  { D } ) )

Proof of Theorem altopthsn
StepHypRef Expression
1 df-altop 25519 . . 3  |-  << A ,  B >>  =  { { A } ,  { A ,  { B } } }
2 df-altop 25519 . . 3  |-  << C ,  D >>  =  { { C } ,  { C ,  { D } } }
31, 2eqeq12i 2402 . 2  |-  ( << A ,  B >>  =  << C ,  D >>  <->  { { A } ,  { A ,  { B } } }  =  { { C } ,  { C ,  { D } } } )
4 snex 4348 . . . . . 6  |-  { A }  e.  _V
5 prex 4349 . . . . . 6  |-  { A ,  { B } }  e.  _V
6 snex 4348 . . . . . 6  |-  { C }  e.  _V
7 prex 4349 . . . . . 6  |-  { C ,  { D } }  e.  _V
84, 5, 6, 7preq12b 3918 . . . . 5  |-  ( { { A } ,  { A ,  { B } } }  =  { { C } ,  { C ,  { D } } }  <->  ( ( { A }  =  { C }  /\  { A ,  { B } }  =  { C ,  { D } } )  \/  ( { A }  =  { C ,  { D } }  /\  { A ,  { B } }  =  { C } ) ) )
9 simpl 444 . . . . . 6  |-  ( ( { A }  =  { C }  /\  { A ,  { B } }  =  { C ,  { D } } )  ->  { A }  =  { C } )
10 snsspr1 3892 . . . . . . . . 9  |-  { A }  C_  { A ,  { B } }
11 sseq2 3315 . . . . . . . . 9  |-  ( { A ,  { B } }  =  { C }  ->  ( { A }  C_  { A ,  { B } }  <->  { A }  C_  { C } ) )
1210, 11mpbii 203 . . . . . . . 8  |-  ( { A ,  { B } }  =  { C }  ->  { A }  C_  { C }
)
1312adantl 453 . . . . . . 7  |-  ( ( { A }  =  { C ,  { D } }  /\  { A ,  { B } }  =  { C } )  ->  { A }  C_ 
{ C } )
14 snsspr1 3892 . . . . . . . . 9  |-  { C }  C_  { C ,  { D } }
15 sseq2 3315 . . . . . . . . 9  |-  ( { A }  =  { C ,  { D } }  ->  ( { C }  C_  { A } 
<->  { C }  C_  { C ,  { D } } ) )
1614, 15mpbiri 225 . . . . . . . 8  |-  ( { A }  =  { C ,  { D } }  ->  { C }  C_  { A }
)
1716adantr 452 . . . . . . 7  |-  ( ( { A }  =  { C ,  { D } }  /\  { A ,  { B } }  =  { C } )  ->  { C }  C_ 
{ A } )
1813, 17eqssd 3310 . . . . . 6  |-  ( ( { A }  =  { C ,  { D } }  /\  { A ,  { B } }  =  { C } )  ->  { A }  =  { C } )
199, 18jaoi 369 . . . . 5  |-  ( ( ( { A }  =  { C }  /\  { A ,  { B } }  =  { C ,  { D } } )  \/  ( { A }  =  { C ,  { D } }  /\  { A ,  { B } }  =  { C } ) )  ->  { A }  =  { C } )
208, 19sylbi 188 . . . 4  |-  ( { { A } ,  { A ,  { B } } }  =  { { C } ,  { C ,  { D } } }  ->  { A }  =  { C } )
21 uneq1 3439 . . . . . . . . . 10  |-  ( { A }  =  { C }  ->  ( { A }  u.  { { B } } )  =  ( { C }  u.  { { B } } ) )
22 df-pr 3766 . . . . . . . . . 10  |-  { A ,  { B } }  =  ( { A }  u.  { { B } } )
23 df-pr 3766 . . . . . . . . . 10  |-  { C ,  { B } }  =  ( { C }  u.  { { B } } )
2421, 22, 233eqtr4g 2446 . . . . . . . . 9  |-  ( { A }  =  { C }  ->  { A ,  { B } }  =  { C ,  { B } } )
2524preq2d 3835 . . . . . . . 8  |-  ( { A }  =  { C }  ->  { { A } ,  { A ,  { B } } }  =  { { A } ,  { C ,  { B } } } )
26 preq1 3828 . . . . . . . 8  |-  ( { A }  =  { C }  ->  { { A } ,  { C ,  { B } } }  =  { { C } ,  { C ,  { B } } } )
2725, 26eqtrd 2421 . . . . . . 7  |-  ( { A }  =  { C }  ->  { { A } ,  { A ,  { B } } }  =  { { C } ,  { C ,  { B } } } )
2827eqeq1d 2397 . . . . . 6  |-  ( { A }  =  { C }  ->  ( { { A } ,  { A ,  { B } } }  =  { { C } ,  { C ,  { D } } }  <->  { { C } ,  { C ,  { B } } }  =  { { C } ,  { C ,  { D } } } ) )
2928biimpd 199 . . . . 5  |-  ( { A }  =  { C }  ->  ( { { A } ,  { A ,  { B } } }  =  { { C } ,  { C ,  { D } } }  ->  { { C } ,  { C ,  { B } } }  =  { { C } ,  { C ,  { D } } } ) )
30 prex 4349 . . . . . . 7  |-  { C ,  { B } }  e.  _V
3130, 7preqr2 3917 . . . . . 6  |-  ( { { C } ,  { C ,  { B } } }  =  { { C } ,  { C ,  { D } } }  ->  { C ,  { B } }  =  { C ,  { D } } )
32 snex 4348 . . . . . . 7  |-  { B }  e.  _V
33 snex 4348 . . . . . . 7  |-  { D }  e.  _V
3432, 33preqr2 3917 . . . . . 6  |-  ( { C ,  { B } }  =  { C ,  { D } }  ->  { B }  =  { D } )
3531, 34syl 16 . . . . 5  |-  ( { { C } ,  { C ,  { B } } }  =  { { C } ,  { C ,  { D } } }  ->  { B }  =  { D } )
3629, 35syl6com 33 . . . 4  |-  ( { { A } ,  { A ,  { B } } }  =  { { C } ,  { C ,  { D } } }  ->  ( { A }  =  { C }  ->  { B }  =  { D } ) )
3720, 36jcai 523 . . 3  |-  ( { { A } ,  { A ,  { B } } }  =  { { C } ,  { C ,  { D } } }  ->  ( { A }  =  { C }  /\  { B }  =  { D } ) )
38 preq2 3829 . . . . 5  |-  ( { B }  =  { D }  ->  { C ,  { B } }  =  { C ,  { D } } )
3938preq2d 3835 . . . 4  |-  ( { B }  =  { D }  ->  { { C } ,  { C ,  { B } } }  =  { { C } ,  { C ,  { D } } } )
4027, 39sylan9eq 2441 . . 3  |-  ( ( { A }  =  { C }  /\  { B }  =  { D } )  ->  { { A } ,  { A ,  { B } } }  =  { { C } ,  { C ,  { D } } } )
4137, 40impbii 181 . 2  |-  ( { { A } ,  { A ,  { B } } }  =  { { C } ,  { C ,  { D } } }  <->  ( { A }  =  { C }  /\  { B }  =  { D } ) )
423, 41bitri 241 1  |-  ( << A ,  B >>  =  << C ,  D >>  <->  ( { A }  =  { C }  /\  { B }  =  { D } ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    u. cun 3263    C_ wss 3265   {csn 3759   {cpr 3760   <<caltop 25517
This theorem is referenced by:  altopeq12  25523  altopth1  25526  altopth2  25527  altopthg  25528  altopthbg  25529
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pr 4346
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-v 2903  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-sn 3765  df-pr 3766  df-altop 25519
  Copyright terms: Public domain W3C validator