Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altprs2 Unicode version

Theorem altprs2 25339
Description: The composite of a preset with itself. (Contributed by FL, 13-May-2011.)
Assertion
Ref Expression
altprs2  |-  ( R  e. PresetRel  ->  ( R  o.  R )  =  R )

Proof of Theorem altprs2
StepHypRef Expression
1 isprsr 25327 . . 3  |-  ( R  e. PresetRel  ->  ( R  e. PresetRel  <->  ( Rel  R  /\  ( R  o.  R )  C_  R  /\  (  _I  |`  U. U. R )  C_  R
) ) )
2 simp2 956 . . . 4  |-  ( ( Rel  R  /\  ( R  o.  R )  C_  R  /\  (  _I  |`  U. U. R ) 
C_  R )  -> 
( R  o.  R
)  C_  R )
3 reflincror 25215 . . . . 5  |-  ( ( Rel  R  /\  (  _I  |`  U. U. R
)  C_  R )  ->  R  C_  ( R  o.  R ) )
433adant2 974 . . . 4  |-  ( ( Rel  R  /\  ( R  o.  R )  C_  R  /\  (  _I  |`  U. U. R ) 
C_  R )  ->  R  C_  ( R  o.  R ) )
52, 4eqssd 3209 . . 3  |-  ( ( Rel  R  /\  ( R  o.  R )  C_  R  /\  (  _I  |`  U. U. R ) 
C_  R )  -> 
( R  o.  R
)  =  R )
61, 5syl6bi 219 . 2  |-  ( R  e. PresetRel  ->  ( R  e. PresetRel  ->  ( R  o.  R
)  =  R ) )
76pm2.43i 43 1  |-  ( R  e. PresetRel  ->  ( R  o.  R )  =  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934    = wceq 1632    e. wcel 1696    C_ wss 3165   U.cuni 3843    _I cid 4320    |` cres 4707    o. ccom 4709   Rel wrel 4710  PresetRelcpresetrel 25318
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-prs 25326
  Copyright terms: Public domain W3C validator