Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altxpeq2 Structured version   Unicode version

Theorem altxpeq2 25784
 Description: Equality for alternate cross products. (Contributed by Scott Fenton, 24-Mar-2012.)
Assertion
Ref Expression
altxpeq2

Proof of Theorem altxpeq2
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexeq 2897 . . . 4
21rexbidv 2718 . . 3
32abbidv 2549 . 2
4 df-altxp 25769 . 2
5 df-altxp 25769 . 2
63, 4, 53eqtr4g 2492 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1652  cab 2421  wrex 2698  caltop 25766   caltxp 25767 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-rex 2703  df-altxp 25769
 Copyright terms: Public domain W3C validator