MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alxfr Unicode version

Theorem alxfr 4563
Description: Transfer universal quantification from a variable  x to another variable  y contained in expression  A. (Contributed by NM, 18-Feb-2007.)
Hypothesis
Ref Expression
alxfr.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
alxfr  |-  ( ( A. y  A  e.  B  /\  A. x E. y  x  =  A )  ->  ( A. x ph  <->  A. y ps ) )
Distinct variable groups:    x, A    ph, y    ps, x    x, y
Allowed substitution hints:    ph( x)    ps( y)    A( y)    B( x, y)

Proof of Theorem alxfr
StepHypRef Expression
1 alxfr.1 . . . . . . 7  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
21spcgv 2881 . . . . . 6  |-  ( A  e.  B  ->  ( A. x ph  ->  ps ) )
32com12 27 . . . . 5  |-  ( A. x ph  ->  ( A  e.  B  ->  ps )
)
43alimdv 1611 . . . 4  |-  ( A. x ph  ->  ( A. y  A  e.  B  ->  A. y ps )
)
54com12 27 . . 3  |-  ( A. y  A  e.  B  ->  ( A. x ph  ->  A. y ps )
)
65adantr 451 . 2  |-  ( ( A. y  A  e.  B  /\  A. x E. y  x  =  A )  ->  ( A. x ph  ->  A. y ps ) )
7 nfa1 1768 . . . . . 6  |-  F/ y A. y ps
8 nfv 1609 . . . . . 6  |-  F/ y
ph
9 sp 1728 . . . . . . 7  |-  ( A. y ps  ->  ps )
109, 1syl5ibrcom 213 . . . . . 6  |-  ( A. y ps  ->  ( x  =  A  ->  ph )
)
117, 8, 10exlimd 1815 . . . . 5  |-  ( A. y ps  ->  ( E. y  x  =  A  ->  ph ) )
1211alimdv 1611 . . . 4  |-  ( A. y ps  ->  ( A. x E. y  x  =  A  ->  A. x ph ) )
1312com12 27 . . 3  |-  ( A. x E. y  x  =  A  ->  ( A. y ps  ->  A. x ph ) )
1413adantl 452 . 2  |-  ( ( A. y  A  e.  B  /\  A. x E. y  x  =  A )  ->  ( A. y ps  ->  A. x ph ) )
156, 14impbid 183 1  |-  ( ( A. y  A  e.  B  /\  A. x E. y  x  =  A )  ->  ( A. x ph  <->  A. y ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1530   E.wex 1531    = wceq 1632    e. wcel 1696
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-v 2803
  Copyright terms: Public domain W3C validator