MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  amgm2 Unicode version

Theorem amgm2 11853
Description: Arithmetic-geometric mean inequality for  n  =  2. (Contributed by Mario Carneiro, 2-Jul-2014.)
Assertion
Ref Expression
amgm2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( sqr `  ( A  x.  B
) )  <_  (
( A  +  B
)  /  2 ) )

Proof of Theorem amgm2
StepHypRef Expression
1 2cn 9816 . . . . . 6  |-  2  e.  CC
2 simpll 730 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  A  e.  RR )
3 simprl 732 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  B  e.  RR )
4 remulcl 8822 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
52, 3, 4syl2anc 642 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  x.  B )  e.  RR )
6 mulge0 9291 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( A  x.  B ) )
7 resqrcl 11739 . . . . . . . 8  |-  ( ( ( A  x.  B
)  e.  RR  /\  0  <_  ( A  x.  B ) )  -> 
( sqr `  ( A  x.  B )
)  e.  RR )
85, 6, 7syl2anc 642 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( sqr `  ( A  x.  B
) )  e.  RR )
98recnd 8861 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( sqr `  ( A  x.  B
) )  e.  CC )
10 sqmul 11167 . . . . . 6  |-  ( ( 2  e.  CC  /\  ( sqr `  ( A  x.  B ) )  e.  CC )  -> 
( ( 2  x.  ( sqr `  ( A  x.  B )
) ) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( ( sqr `  ( A  x.  B
) ) ^ 2 ) ) )
111, 9, 10sylancr 644 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
2  x.  ( sqr `  ( A  x.  B
) ) ) ^
2 )  =  ( ( 2 ^ 2 )  x.  ( ( sqr `  ( A  x.  B ) ) ^ 2 ) ) )
12 sq2 11199 . . . . . . 7  |-  ( 2 ^ 2 )  =  4
1312oveq1i 5868 . . . . . 6  |-  ( ( 2 ^ 2 )  x.  ( ( sqr `  ( A  x.  B
) ) ^ 2 ) )  =  ( 4  x.  ( ( sqr `  ( A  x.  B ) ) ^ 2 ) )
145recnd 8861 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  x.  B )  e.  CC )
15 sqrth 11848 . . . . . . . 8  |-  ( ( A  x.  B )  e.  CC  ->  (
( sqr `  ( A  x.  B )
) ^ 2 )  =  ( A  x.  B ) )
1614, 15syl 15 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( sqr `  ( A  x.  B ) ) ^
2 )  =  ( A  x.  B ) )
1716oveq2d 5874 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 4  x.  ( ( sqr `  ( A  x.  B
) ) ^ 2 ) )  =  ( 4  x.  ( A  x.  B ) ) )
1813, 17syl5eq 2327 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
2 ^ 2 )  x.  ( ( sqr `  ( A  x.  B
) ) ^ 2 ) )  =  ( 4  x.  ( A  x.  B ) ) )
1911, 18eqtrd 2315 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
2  x.  ( sqr `  ( A  x.  B
) ) ) ^
2 )  =  ( 4  x.  ( A  x.  B ) ) )
202, 3resubcld 9211 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  -  B )  e.  RR )
2120sqge0d 11272 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( ( A  -  B
) ^ 2 ) )
222recnd 8861 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  A  e.  CC )
233recnd 8861 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  B  e.  CC )
24 binom2 11218 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) ) )
2522, 23, 24syl2anc 642 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  +  B ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  +  ( B ^ 2 ) ) )
26 binom2sub 11220 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B ) ^ 2 )  =  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) ) )
2722, 23, 26syl2anc 642 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  -  B ) ^ 2 )  =  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B )
) )  +  ( B ^ 2 ) ) )
2825, 27oveq12d 5876 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
( A  +  B
) ^ 2 )  -  ( ( A  -  B ) ^
2 ) )  =  ( ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) )  -  (
( ( A ^
2 )  -  (
2  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) ) ) )
292resqcld 11271 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A ^ 2 )  e.  RR )
30 2re 9815 . . . . . . . . . . . 12  |-  2  e.  RR
31 remulcl 8822 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR  /\  ( A  x.  B
)  e.  RR )  ->  ( 2  x.  ( A  x.  B
) )  e.  RR )
3230, 5, 31sylancr 644 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 2  x.  ( A  x.  B ) )  e.  RR )
3329, 32readdcld 8862 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  e.  RR )
3433recnd 8861 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  e.  CC )
3529, 32resubcld 9211 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B )
) )  e.  RR )
3635recnd 8861 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B )
) )  e.  CC )
373resqcld 11271 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( B ^ 2 )  e.  RR )
3837recnd 8861 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( B ^ 2 )  e.  CC )
3934, 36, 38pnpcan2d 9195 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
( ( A ^
2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) )  -  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) ) )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  -  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  B ) ) ) ) )
4032recnd 8861 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 2  x.  ( A  x.  B ) )  e.  CC )
41402timesd 9954 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 2  x.  ( 2  x.  ( A  x.  B
) ) )  =  ( ( 2  x.  ( A  x.  B
) )  +  ( 2  x.  ( A  x.  B ) ) ) )
42 2t2e4 9871 . . . . . . . . . . 11  |-  ( 2  x.  2 )  =  4
4342oveq1i 5868 . . . . . . . . . 10  |-  ( ( 2  x.  2 )  x.  ( A  x.  B ) )  =  ( 4  x.  ( A  x.  B )
)
441a1i 10 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  2  e.  CC )
4544, 44, 14mulassd 8858 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
2  x.  2 )  x.  ( A  x.  B ) )  =  ( 2  x.  (
2  x.  ( A  x.  B ) ) ) )
4643, 45syl5eqr 2329 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 4  x.  ( A  x.  B ) )  =  ( 2  x.  (
2  x.  ( A  x.  B ) ) ) )
4729recnd 8861 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A ^ 2 )  e.  CC )
4847, 40, 40pnncand 9196 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
( A ^ 2 )  +  ( 2  x.  ( A  x.  B ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B )
) ) )  =  ( ( 2  x.  ( A  x.  B
) )  +  ( 2  x.  ( A  x.  B ) ) ) )
4941, 46, 483eqtr4rd 2326 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
( A ^ 2 )  +  ( 2  x.  ( A  x.  B ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B )
) ) )  =  ( 4  x.  ( A  x.  B )
) )
5028, 39, 493eqtrd 2319 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
( A  +  B
) ^ 2 )  -  ( ( A  -  B ) ^
2 ) )  =  ( 4  x.  ( A  x.  B )
) )
512, 3readdcld 8862 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  +  B )  e.  RR )
5251resqcld 11271 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  +  B ) ^ 2 )  e.  RR )
5352recnd 8861 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  +  B ) ^ 2 )  e.  CC )
5420resqcld 11271 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  -  B ) ^ 2 )  e.  RR )
5554recnd 8861 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  -  B ) ^ 2 )  e.  CC )
56 4re 9819 . . . . . . . . . 10  |-  4  e.  RR
57 remulcl 8822 . . . . . . . . . 10  |-  ( ( 4  e.  RR  /\  ( A  x.  B
)  e.  RR )  ->  ( 4  x.  ( A  x.  B
) )  e.  RR )
5856, 5, 57sylancr 644 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 4  x.  ( A  x.  B ) )  e.  RR )
5958recnd 8861 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 4  x.  ( A  x.  B ) )  e.  CC )
60 subsub23 9056 . . . . . . . 8  |-  ( ( ( ( A  +  B ) ^ 2 )  e.  CC  /\  ( ( A  -  B ) ^ 2 )  e.  CC  /\  ( 4  x.  ( A  x.  B )
)  e.  CC )  ->  ( ( ( ( A  +  B
) ^ 2 )  -  ( ( A  -  B ) ^
2 ) )  =  ( 4  x.  ( A  x.  B )
)  <->  ( ( ( A  +  B ) ^ 2 )  -  ( 4  x.  ( A  x.  B )
) )  =  ( ( A  -  B
) ^ 2 ) ) )
6153, 55, 59, 60syl3anc 1182 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
( ( A  +  B ) ^ 2 )  -  ( ( A  -  B ) ^ 2 ) )  =  ( 4  x.  ( A  x.  B
) )  <->  ( (
( A  +  B
) ^ 2 )  -  ( 4  x.  ( A  x.  B
) ) )  =  ( ( A  -  B ) ^ 2 ) ) )
6250, 61mpbid 201 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
( A  +  B
) ^ 2 )  -  ( 4  x.  ( A  x.  B
) ) )  =  ( ( A  -  B ) ^ 2 ) )
6321, 62breqtrrd 4049 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( ( ( A  +  B ) ^ 2 )  -  ( 4  x.  ( A  x.  B ) ) ) )
6452, 58subge0d 9362 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 0  <_  ( ( ( A  +  B ) ^ 2 )  -  ( 4  x.  ( A  x.  B )
) )  <->  ( 4  x.  ( A  x.  B ) )  <_ 
( ( A  +  B ) ^ 2 ) ) )
6563, 64mpbid 201 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 4  x.  ( A  x.  B ) )  <_ 
( ( A  +  B ) ^ 2 ) )
6619, 65eqbrtrd 4043 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
2  x.  ( sqr `  ( A  x.  B
) ) ) ^
2 )  <_  (
( A  +  B
) ^ 2 ) )
67 remulcl 8822 . . . . 5  |-  ( ( 2  e.  RR  /\  ( sqr `  ( A  x.  B ) )  e.  RR )  -> 
( 2  x.  ( sqr `  ( A  x.  B ) ) )  e.  RR )
6830, 8, 67sylancr 644 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 2  x.  ( sqr `  ( A  x.  B )
) )  e.  RR )
69 sqrge0 11743 . . . . . 6  |-  ( ( ( A  x.  B
)  e.  RR  /\  0  <_  ( A  x.  B ) )  -> 
0  <_  ( sqr `  ( A  x.  B
) ) )
705, 6, 69syl2anc 642 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( sqr `  ( A  x.  B ) ) )
71 0re 8838 . . . . . . 7  |-  0  e.  RR
72 2pos 9828 . . . . . . 7  |-  0  <  2
7371, 30, 72ltleii 8941 . . . . . 6  |-  0  <_  2
74 mulge0 9291 . . . . . 6  |-  ( ( ( 2  e.  RR  /\  0  <_  2 )  /\  ( ( sqr `  ( A  x.  B
) )  e.  RR  /\  0  <_  ( sqr `  ( A  x.  B
) ) ) )  ->  0  <_  (
2  x.  ( sqr `  ( A  x.  B
) ) ) )
7530, 73, 74mpanl12 663 . . . . 5  |-  ( ( ( sqr `  ( A  x.  B )
)  e.  RR  /\  0  <_  ( sqr `  ( A  x.  B )
) )  ->  0  <_  ( 2  x.  ( sqr `  ( A  x.  B ) ) ) )
768, 70, 75syl2anc 642 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( 2  x.  ( sqr `  ( A  x.  B
) ) ) )
77 addge0 9263 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <_  B
) )  ->  0  <_  ( A  +  B
) )
7877an4s 799 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( A  +  B ) )
7968, 51, 76, 78le2sqd 11280 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
2  x.  ( sqr `  ( A  x.  B
) ) )  <_ 
( A  +  B
)  <->  ( ( 2  x.  ( sqr `  ( A  x.  B )
) ) ^ 2 )  <_  ( ( A  +  B ) ^ 2 ) ) )
8066, 79mpbird 223 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 2  x.  ( sqr `  ( A  x.  B )
) )  <_  ( A  +  B )
)
8130, 72pm3.2i 441 . . . 4  |-  ( 2  e.  RR  /\  0  <  2 )
8281a1i 10 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 2  e.  RR  /\  0  <  2 ) )
83 lemuldiv2 9636 . . 3  |-  ( ( ( sqr `  ( A  x.  B )
)  e.  RR  /\  ( A  +  B
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
2  x.  ( sqr `  ( A  x.  B
) ) )  <_ 
( A  +  B
)  <->  ( sqr `  ( A  x.  B )
)  <_  ( ( A  +  B )  /  2 ) ) )
848, 51, 82, 83syl3anc 1182 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
2  x.  ( sqr `  ( A  x.  B
) ) )  <_ 
( A  +  B
)  <->  ( sqr `  ( A  x.  B )
)  <_  ( ( A  +  B )  /  2 ) ) )
8580, 84mpbid 201 1  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( sqr `  ( A  x.  B
) )  <_  (
( A  +  B
)  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    - cmin 9037    / cdiv 9423   2c2 9795   4c4 9797   ^cexp 11104   sqrcsqr 11718
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721
  Copyright terms: Public domain W3C validator