MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  an13 Structured version   Unicode version

Theorem an13 775
Description: A rearrangement of conjuncts. (Contributed by NM, 24-Jun-2012.) (Proof shortened by Wolf Lammen, 31-Dec-2012.)
Assertion
Ref Expression
an13  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  <->  ( ch  /\  ( ps  /\  ph ) ) )

Proof of Theorem an13
StepHypRef Expression
1 an12 773 . 2  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  <->  ( ps  /\  ( ph  /\  ch ) ) )
2 anass 631 . 2  |-  ( ( ( ps  /\  ph )  /\  ch )  <->  ( ps  /\  ( ph  /\  ch ) ) )
3 ancom 438 . 2  |-  ( ( ( ps  /\  ph )  /\  ch )  <->  ( ch  /\  ( ps  /\  ph ) ) )
41, 2, 33bitr2i 265 1  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  <->  ( ch  /\  ( ps  /\  ph ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359
This theorem is referenced by:  an31  776  elxp2  4888  dchrelbas3  21014  dfiota3  25760  islpln5  30269  islvol5  30313  dibelval3  31882
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361
  Copyright terms: Public domain W3C validator