MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabs7 Structured version   Unicode version

Theorem anabs7 787
Description: Absorption into embedded conjunct. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 17-Nov-2013.)
Assertion
Ref Expression
anabs7  |-  ( ( ps  /\  ( ph  /\ 
ps ) )  <->  ( ph  /\ 
ps ) )

Proof of Theorem anabs7
StepHypRef Expression
1 simpr 449 . . 3  |-  ( (
ph  /\  ps )  ->  ps )
21pm4.71ri 616 . 2  |-  ( (
ph  /\  ps )  <->  ( ps  /\  ( ph  /\ 
ps ) ) )
32bicomi 195 1  |-  ( ( ps  /\  ( ph  /\ 
ps ) )  <->  ( ph  /\ 
ps ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360
This theorem is referenced by:  prtlem15  26725  un2122  28903
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 179  df-an 362
  Copyright terms: Public domain W3C validator