MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabsan2 Unicode version

Theorem anabsan2 795
Description: Absorption of antecedent with conjunction. (Contributed by NM, 10-May-2004.)
Hypothesis
Ref Expression
anabsan2.1  |-  ( (
ph  /\  ( ps  /\ 
ps ) )  ->  ch )
Assertion
Ref Expression
anabsan2  |-  ( (
ph  /\  ps )  ->  ch )

Proof of Theorem anabsan2
StepHypRef Expression
1 anabsan2.1 . . 3  |-  ( (
ph  /\  ( ps  /\ 
ps ) )  ->  ch )
21an12s 776 . 2  |-  ( ( ps  /\  ( ph  /\ 
ps ) )  ->  ch )
32anabss7 794 1  |-  ( (
ph  /\  ps )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358
This theorem is referenced by:  anabss3  796  anandirs  804  lmodvsdi  15650  lmodvsdir  15652  lmodvsass  15654  lss0cl  15704  phlpropd  16559  mbfimasn  18989
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator