MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabsi6 Unicode version

Theorem anabsi6 791
Description: Absorption of antecedent into conjunction. (Contributed by NM, 14-Aug-2000.)
Hypothesis
Ref Expression
anabsi6.1  |-  ( ph  ->  ( ( ps  /\  ph )  ->  ch )
)
Assertion
Ref Expression
anabsi6  |-  ( (
ph  /\  ps )  ->  ch )

Proof of Theorem anabsi6
StepHypRef Expression
1 anabsi6.1 . . 3  |-  ( ph  ->  ( ( ps  /\  ph )  ->  ch )
)
21ancomsd 440 . 2  |-  ( ph  ->  ( ( ph  /\  ps )  ->  ch )
)
32anabsi5 790 1  |-  ( (
ph  /\  ps )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358
This theorem is referenced by:  anabsi7  792  pjnormssi  22748
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator