MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabss3 Structured version   Unicode version

Theorem anabss3 798
Description: Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 1-Jan-2013.)
Hypothesis
Ref Expression
anabss3.1  |-  ( ( ( ph  /\  ps )  /\  ps )  ->  ch )
Assertion
Ref Expression
anabss3  |-  ( (
ph  /\  ps )  ->  ch )

Proof of Theorem anabss3
StepHypRef Expression
1 anabss3.1 . . 3  |-  ( ( ( ph  /\  ps )  /\  ps )  ->  ch )
21anasss 630 . 2  |-  ( (
ph  /\  ( ps  /\ 
ps ) )  ->  ch )
32anabsan2 797 1  |-  ( (
ph  /\  ps )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360
This theorem is referenced by:  3anidm23  1244  expclzlem  11410  plyrem  20227  anabss7p1  28973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 179  df-an 362
  Copyright terms: Public domain W3C validator