Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  anabss7p1 Unicode version

Theorem anabss7p1 28876
Description: A deduction unionizing a non-unionized collection of virtual hypotheses. This would have been named uun221 if the 0th permutation did not exist in set.mm as anabss7 794. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
anabss7p1.1  |-  ( ( ( ps  /\  ph )  /\  ph )  ->  ch )
Assertion
Ref Expression
anabss7p1  |-  ( ( ps  /\  ph )  ->  ch )

Proof of Theorem anabss7p1
StepHypRef Expression
1 anabss7p1.1 . 2  |-  ( ( ( ps  /\  ph )  /\  ph )  ->  ch )
21anabss3 796 1  |-  ( ( ps  /\  ph )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator