MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anandir Structured version   Unicode version

Theorem anandir 803
Description: Distribution of conjunction over conjunction. (Contributed by NM, 24-Aug-1995.)
Assertion
Ref Expression
anandir  |-  ( ( ( ph  /\  ps )  /\  ch )  <->  ( ( ph  /\  ch )  /\  ( ps  /\  ch )
) )

Proof of Theorem anandir
StepHypRef Expression
1 anidm 626 . . 3  |-  ( ( ch  /\  ch )  <->  ch )
21anbi2i 676 . 2  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  ch ) )  <->  ( ( ph  /\  ps )  /\  ch ) )
3 an4 798 . 2  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  ch ) )  <->  ( ( ph  /\  ch )  /\  ( ps  /\  ch )
) )
42, 3bitr3i 243 1  |-  ( ( ( ph  /\  ps )  /\  ch )  <->  ( ( ph  /\  ch )  /\  ( ps  /\  ch )
) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359
This theorem is referenced by:  cadan  1401  disjxun  4202  fununi  5509  imadif  5520  elfzuzb  11045  5oalem3  23150  5oalem5  23152  wfrlem5  25534  frrlem5  25578  frgra3v  28329  un2122  28839
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361
  Copyright terms: Public domain W3C validator