MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anandis Unicode version

Theorem anandis 803
Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.)
Hypothesis
Ref Expression
anandis.1  |-  ( ( ( ph  /\  ps )  /\  ( ph  /\  ch ) )  ->  ta )
Assertion
Ref Expression
anandis  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  ta )

Proof of Theorem anandis
StepHypRef Expression
1 anandis.1 . . 3  |-  ( ( ( ph  /\  ps )  /\  ( ph  /\  ch ) )  ->  ta )
21an4s 799 . 2  |-  ( ( ( ph  /\  ph )  /\  ( ps  /\  ch ) )  ->  ta )
32anabsan 786 1  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358
This theorem is referenced by:  3impdi  1237  dff13  5783  f1oiso  5848  omord2  6565  fodomacn  7683  ltapi  8527  ltmpi  8528  axpre-ltadd  8789  faclbnd  11303  pwsdiagmhm  14445  tgcl  16707  grpoinvf  20907  ocorth  21870  fh1  22197  fh2  22198  spansncvi  22231  lnopmi  22580  adjlnop  22666  brbtwn2  24533
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator