MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ang180lem1 Unicode version

Theorem ang180lem1 20123
Description: Lemma for ang180 20128. Show that the "revolution number"  N is an integer, using efeq1 19907 to show that since the product of the three arguments  A ,  1  / 
( 1  -  A
) ,  ( A  -  1 )  /  A is  -u 1, the sum of the logarithms must be an integer multiple of  2
pi _i away from  pi _i  =  log ( -u 1 ). (Contributed by Mario Carneiro, 23-Sep-2014.)
Hypotheses
Ref Expression
ang.1  |-  F  =  ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( Im `  ( log `  ( y  /  x ) ) ) )
ang180lem1.2  |-  T  =  ( ( ( log `  ( 1  /  (
1  -  A ) ) )  +  ( log `  ( ( A  -  1 )  /  A ) ) )  +  ( log `  A ) )
ang180lem1.3  |-  N  =  ( ( ( T  /  _i )  / 
( 2  x.  pi ) )  -  (
1  /  2 ) )
Assertion
Ref Expression
ang180lem1  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( N  e.  ZZ  /\  ( T  /  _i )  e.  RR ) )
Distinct variable group:    x, y, A
Allowed substitution hints:    T( x, y)    F( x, y)    N( x, y)

Proof of Theorem ang180lem1
StepHypRef Expression
1 pire 19848 . . . . . . . 8  |-  pi  e.  RR
21recni 8865 . . . . . . 7  |-  pi  e.  CC
3 2re 9831 . . . . . . . . . 10  |-  2  e.  RR
43, 1remulcli 8867 . . . . . . . . 9  |-  ( 2  x.  pi )  e.  RR
54recni 8865 . . . . . . . 8  |-  ( 2  x.  pi )  e.  CC
6 2pos 9844 . . . . . . . . . 10  |-  0  <  2
7 pipos 19849 . . . . . . . . . 10  |-  0  <  pi
83, 1, 6, 7mulgt0ii 8968 . . . . . . . . 9  |-  0  <  ( 2  x.  pi )
94, 8gt0ne0ii 9325 . . . . . . . 8  |-  ( 2  x.  pi )  =/=  0
105, 9pm3.2i 441 . . . . . . 7  |-  ( ( 2  x.  pi )  e.  CC  /\  (
2  x.  pi )  =/=  0 )
11 ax-icn 8812 . . . . . . . 8  |-  _i  e.  CC
12 ine0 9231 . . . . . . . 8  |-  _i  =/=  0
1311, 12pm3.2i 441 . . . . . . 7  |-  ( _i  e.  CC  /\  _i  =/=  0 )
14 divcan5 9478 . . . . . . 7  |-  ( ( pi  e.  CC  /\  ( ( 2  x.  pi )  e.  CC  /\  ( 2  x.  pi )  =/=  0 )  /\  ( _i  e.  CC  /\  _i  =/=  0 ) )  ->  ( (
_i  x.  pi )  /  ( _i  x.  ( 2  x.  pi ) ) )  =  ( pi  /  (
2  x.  pi ) ) )
152, 10, 13, 14mp3an 1277 . . . . . 6  |-  ( ( _i  x.  pi )  /  ( _i  x.  ( 2  x.  pi ) ) )  =  ( pi  /  (
2  x.  pi ) )
161, 7gt0ne0ii 9325 . . . . . . 7  |-  pi  =/=  0
17 recdiv 9482 . . . . . . 7  |-  ( ( ( ( 2  x.  pi )  e.  CC  /\  ( 2  x.  pi )  =/=  0 )  /\  ( pi  e.  CC  /\  pi  =/=  0 ) )  ->  ( 1  /  ( ( 2  x.  pi )  /  pi ) )  =  ( pi  /  ( 2  x.  pi ) ) )
185, 9, 2, 16, 17mp4an 654 . . . . . 6  |-  ( 1  /  ( ( 2  x.  pi )  /  pi ) )  =  ( pi  /  ( 2  x.  pi ) )
193recni 8865 . . . . . . . 8  |-  2  e.  CC
2019, 2, 16divcan4i 9523 . . . . . . 7  |-  ( ( 2  x.  pi )  /  pi )  =  2
2120oveq2i 5885 . . . . . 6  |-  ( 1  /  ( ( 2  x.  pi )  /  pi ) )  =  ( 1  /  2 )
2215, 18, 213eqtr2i 2322 . . . . 5  |-  ( ( _i  x.  pi )  /  ( _i  x.  ( 2  x.  pi ) ) )  =  ( 1  /  2
)
2322oveq2i 5885 . . . 4  |-  ( ( T  /  ( _i  x.  ( 2  x.  pi ) ) )  -  ( ( _i  x.  pi )  / 
( _i  x.  (
2  x.  pi ) ) ) )  =  ( ( T  / 
( _i  x.  (
2  x.  pi ) ) )  -  (
1  /  2 ) )
24 ang180lem1.2 . . . . . 6  |-  T  =  ( ( ( log `  ( 1  /  (
1  -  A ) ) )  +  ( log `  ( ( A  -  1 )  /  A ) ) )  +  ( log `  A ) )
25 ax-1cn 8811 . . . . . . . . . . 11  |-  1  e.  CC
26 simp1 955 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  A  e.  CC )
27 subcl 9067 . . . . . . . . . . 11  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  -  A
)  e.  CC )
2825, 26, 27sylancr 644 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
1  -  A )  e.  CC )
29 simp3 957 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  A  =/=  1 )
3029necomd 2542 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  1  =/=  A )
31 subeq0 9089 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( ( 1  -  A )  =  0  <->  1  =  A ) )
3225, 26, 31sylancr 644 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( 1  -  A
)  =  0  <->  1  =  A ) )
3332necon3bid 2494 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( 1  -  A
)  =/=  0  <->  1  =/=  A ) )
3430, 33mpbird 223 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
1  -  A )  =/=  0 )
3528, 34reccld 9545 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
1  /  ( 1  -  A ) )  e.  CC )
3628, 34recne0d 9546 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
1  /  ( 1  -  A ) )  =/=  0 )
37 logcl 19942 . . . . . . . . 9  |-  ( ( ( 1  /  (
1  -  A ) )  e.  CC  /\  ( 1  /  (
1  -  A ) )  =/=  0 )  ->  ( log `  (
1  /  ( 1  -  A ) ) )  e.  CC )
3835, 36, 37syl2anc 642 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( log `  ( 1  / 
( 1  -  A
) ) )  e.  CC )
39 subcl 9067 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A  -  1 )  e.  CC )
4026, 25, 39sylancl 643 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( A  -  1 )  e.  CC )
41 simp2 956 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  A  =/=  0 )
4240, 26, 41divcld 9552 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( A  -  1 )  /  A )  e.  CC )
43 subeq0 9089 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  - 
1 )  =  0  <-> 
A  =  1 ) )
4426, 25, 43sylancl 643 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( A  -  1 )  =  0  <->  A  =  1 ) )
4544necon3bid 2494 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( A  -  1 )  =/=  0  <->  A  =/=  1 ) )
4629, 45mpbird 223 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( A  -  1 )  =/=  0 )
4740, 26, 46, 41divne0d 9568 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( A  -  1 )  /  A )  =/=  0 )
48 logcl 19942 . . . . . . . . 9  |-  ( ( ( ( A  - 
1 )  /  A
)  e.  CC  /\  ( ( A  - 
1 )  /  A
)  =/=  0 )  ->  ( log `  (
( A  -  1 )  /  A ) )  e.  CC )
4942, 47, 48syl2anc 642 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( log `  ( ( A  -  1 )  /  A ) )  e.  CC )
5038, 49addcld 8870 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) )  e.  CC )
51 logcl 19942 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( log `  A
)  e.  CC )
5226, 41, 51syl2anc 642 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( log `  A )  e.  CC )
5350, 52addcld 8870 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) )  +  ( log `  A
) )  e.  CC )
5424, 53syl5eqel 2380 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  T  e.  CC )
5511, 2mulcli 8858 . . . . . 6  |-  ( _i  x.  pi )  e.  CC
5655a1i 10 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
_i  x.  pi )  e.  CC )
5711, 5mulcli 8858 . . . . . 6  |-  ( _i  x.  ( 2  x.  pi ) )  e.  CC
5857a1i 10 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
_i  x.  ( 2  x.  pi ) )  e.  CC )
5911, 5, 12, 9mulne0i 9427 . . . . . 6  |-  ( _i  x.  ( 2  x.  pi ) )  =/=  0
6059a1i 10 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
_i  x.  ( 2  x.  pi ) )  =/=  0 )
6154, 56, 58, 60divsubdird 9591 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( T  -  (
_i  x.  pi )
)  /  ( _i  x.  ( 2  x.  pi ) ) )  =  ( ( T  /  ( _i  x.  ( 2  x.  pi ) ) )  -  ( ( _i  x.  pi )  /  (
_i  x.  ( 2  x.  pi ) ) ) ) )
62 ang180lem1.3 . . . . 5  |-  N  =  ( ( ( T  /  _i )  / 
( 2  x.  pi ) )  -  (
1  /  2 ) )
6313a1i 10 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
_i  e.  CC  /\  _i  =/=  0 ) )
6410a1i 10 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( 2  x.  pi )  e.  CC  /\  (
2  x.  pi )  =/=  0 ) )
65 divdiv1 9487 . . . . . . 7  |-  ( ( T  e.  CC  /\  ( _i  e.  CC  /\  _i  =/=  0 )  /\  ( ( 2  x.  pi )  e.  CC  /\  ( 2  x.  pi )  =/=  0 ) )  -> 
( ( T  /  _i )  /  (
2  x.  pi ) )  =  ( T  /  ( _i  x.  ( 2  x.  pi ) ) ) )
6654, 63, 64, 65syl3anc 1182 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( T  /  _i )  /  ( 2  x.  pi ) )  =  ( T  /  (
_i  x.  ( 2  x.  pi ) ) ) )
6766oveq1d 5889 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( T  /  _i )  /  (
2  x.  pi ) )  -  ( 1  /  2 ) )  =  ( ( T  /  ( _i  x.  ( 2  x.  pi ) ) )  -  ( 1  /  2
) ) )
6862, 67syl5eq 2340 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  N  =  ( ( T  /  ( _i  x.  ( 2  x.  pi ) ) )  -  ( 1  /  2
) ) )
6923, 61, 683eqtr4a 2354 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( T  -  (
_i  x.  pi )
)  /  ( _i  x.  ( 2  x.  pi ) ) )  =  N )
70 efsub 12396 . . . . . 6  |-  ( ( T  e.  CC  /\  ( _i  x.  pi )  e.  CC )  ->  ( exp `  ( T  -  ( _i  x.  pi ) ) )  =  ( ( exp `  T )  /  ( exp `  ( _i  x.  pi ) ) ) )
7154, 55, 70sylancl 643 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( exp `  ( T  -  ( _i  x.  pi ) ) )  =  ( ( exp `  T
)  /  ( exp `  ( _i  x.  pi ) ) ) )
72 efipi 19857 . . . . . . 7  |-  ( exp `  ( _i  x.  pi ) )  =  -u
1
7372oveq2i 5885 . . . . . 6  |-  ( ( exp `  T )  /  ( exp `  (
_i  x.  pi )
) )  =  ( ( exp `  T
)  /  -u 1
)
7424fveq2i 5544 . . . . . . . . 9  |-  ( exp `  T )  =  ( exp `  ( ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) )  +  ( log `  A
) ) )
75 efadd 12391 . . . . . . . . . . 11  |-  ( ( ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) )  e.  CC  /\  ( log `  A )  e.  CC )  ->  ( exp `  (
( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) )  +  ( log `  A
) ) )  =  ( ( exp `  (
( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) )  x.  ( exp `  ( log `  A ) ) ) )
7650, 52, 75syl2anc 642 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( exp `  ( ( ( log `  ( 1  /  ( 1  -  A ) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) )  +  ( log `  A ) ) )  =  ( ( exp `  (
( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) )  x.  ( exp `  ( log `  A ) ) ) )
77 efadd 12391 . . . . . . . . . . . . 13  |-  ( ( ( log `  (
1  /  ( 1  -  A ) ) )  e.  CC  /\  ( log `  ( ( A  -  1 )  /  A ) )  e.  CC )  -> 
( exp `  (
( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) )  =  ( ( exp `  ( log `  (
1  /  ( 1  -  A ) ) ) )  x.  ( exp `  ( log `  (
( A  -  1 )  /  A ) ) ) ) )
7838, 49, 77syl2anc 642 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( exp `  ( ( log `  ( 1  /  (
1  -  A ) ) )  +  ( log `  ( ( A  -  1 )  /  A ) ) ) )  =  ( ( exp `  ( log `  ( 1  / 
( 1  -  A
) ) ) )  x.  ( exp `  ( log `  ( ( A  -  1 )  /  A ) ) ) ) )
79 eflog 19949 . . . . . . . . . . . . . 14  |-  ( ( ( 1  /  (
1  -  A ) )  e.  CC  /\  ( 1  /  (
1  -  A ) )  =/=  0 )  ->  ( exp `  ( log `  ( 1  / 
( 1  -  A
) ) ) )  =  ( 1  / 
( 1  -  A
) ) )
8035, 36, 79syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( exp `  ( log `  (
1  /  ( 1  -  A ) ) ) )  =  ( 1  /  ( 1  -  A ) ) )
81 eflog 19949 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  - 
1 )  /  A
)  e.  CC  /\  ( ( A  - 
1 )  /  A
)  =/=  0 )  ->  ( exp `  ( log `  ( ( A  -  1 )  /  A ) ) )  =  ( ( A  -  1 )  /  A ) )
8242, 47, 81syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( exp `  ( log `  (
( A  -  1 )  /  A ) ) )  =  ( ( A  -  1 )  /  A ) )
8380, 82oveq12d 5892 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( exp `  ( log `  ( 1  / 
( 1  -  A
) ) ) )  x.  ( exp `  ( log `  ( ( A  -  1 )  /  A ) ) ) )  =  ( ( 1  /  ( 1  -  A ) )  x.  ( ( A  -  1 )  /  A ) ) )
8435, 42mulcomd 8872 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( 1  /  (
1  -  A ) )  x.  ( ( A  -  1 )  /  A ) )  =  ( ( ( A  -  1 )  /  A )  x.  ( 1  /  (
1  -  A ) ) ) )
8525a1i 10 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  1  e.  CC )
8685, 28, 34div2negd 9567 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u 1  /  -u (
1  -  A ) )  =  ( 1  /  ( 1  -  A ) ) )
87 negsubdi2 9122 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  e.  CC  /\  A  e.  CC )  -> 
-u ( 1  -  A )  =  ( A  -  1 ) )
8825, 26, 87sylancr 644 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  -u (
1  -  A )  =  ( A  - 
1 ) )
8988oveq2d 5890 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u 1  /  -u (
1  -  A ) )  =  ( -u
1  /  ( A  -  1 ) ) )
9086, 89eqtr3d 2330 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
1  /  ( 1  -  A ) )  =  ( -u 1  /  ( A  - 
1 ) ) )
9190oveq2d 5890 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( A  - 
1 )  /  A
)  x.  ( 1  /  ( 1  -  A ) ) )  =  ( ( ( A  -  1 )  /  A )  x.  ( -u 1  / 
( A  -  1 ) ) ) )
92 neg1cn 9829 . . . . . . . . . . . . . . 15  |-  -u 1  e.  CC
9392a1i 10 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  -u 1  e.  CC )
9493, 40, 26, 46, 41dmdcand 9581 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( A  - 
1 )  /  A
)  x.  ( -u
1  /  ( A  -  1 ) ) )  =  ( -u
1  /  A ) )
9584, 91, 943eqtrd 2332 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( 1  /  (
1  -  A ) )  x.  ( ( A  -  1 )  /  A ) )  =  ( -u 1  /  A ) )
9678, 83, 953eqtrd 2332 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( exp `  ( ( log `  ( 1  /  (
1  -  A ) ) )  +  ( log `  ( ( A  -  1 )  /  A ) ) ) )  =  (
-u 1  /  A
) )
97 eflog 19949 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( exp `  ( log `  A ) )  =  A )
9826, 41, 97syl2anc 642 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( exp `  ( log `  A
) )  =  A )
9996, 98oveq12d 5892 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( exp `  (
( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) )  x.  ( exp `  ( log `  A ) ) )  =  ( (
-u 1  /  A
)  x.  A ) )
10093, 26, 41divcan1d 9553 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( -u 1  /  A
)  x.  A )  =  -u 1 )
10176, 99, 1003eqtrd 2332 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( exp `  ( ( ( log `  ( 1  /  ( 1  -  A ) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) )  +  ( log `  A ) ) )  =  -u
1 )
10274, 101syl5eq 2340 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( exp `  T )  = 
-u 1 )
103102oveq1d 5889 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( exp `  T
)  /  -u 1
)  =  ( -u
1  /  -u 1
) )
104 ax-1ne0 8822 . . . . . . . . 9  |-  1  =/=  0
10525, 104negne0i 9137 . . . . . . . 8  |-  -u 1  =/=  0
10692, 105dividi 9509 . . . . . . 7  |-  ( -u
1  /  -u 1
)  =  1
107103, 106syl6eq 2344 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( exp `  T
)  /  -u 1
)  =  1 )
10873, 107syl5eq 2340 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( exp `  T
)  /  ( exp `  ( _i  x.  pi ) ) )  =  1 )
10971, 108eqtrd 2328 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( exp `  ( T  -  ( _i  x.  pi ) ) )  =  1 )
110 subcl 9067 . . . . . 6  |-  ( ( T  e.  CC  /\  ( _i  x.  pi )  e.  CC )  ->  ( T  -  (
_i  x.  pi )
)  e.  CC )
11154, 55, 110sylancl 643 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( T  -  ( _i  x.  pi ) )  e.  CC )
112 efeq1 19907 . . . . 5  |-  ( ( T  -  ( _i  x.  pi ) )  e.  CC  ->  (
( exp `  ( T  -  ( _i  x.  pi ) ) )  =  1  <->  ( ( T  -  ( _i  x.  pi ) )  / 
( _i  x.  (
2  x.  pi ) ) )  e.  ZZ ) )
113111, 112syl 15 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( exp `  ( T  -  ( _i  x.  pi ) ) )  =  1  <->  ( ( T  -  ( _i  x.  pi ) )  / 
( _i  x.  (
2  x.  pi ) ) )  e.  ZZ ) )
114109, 113mpbid 201 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( T  -  (
_i  x.  pi )
)  /  ( _i  x.  ( 2  x.  pi ) ) )  e.  ZZ )
11569, 114eqeltrrd 2371 . 2  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  N  e.  ZZ )
11611a1i 10 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  _i  e.  CC )
11712a1i 10 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  _i  =/=  0 )
11854, 116, 117divcld 9552 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( T  /  _i )  e.  CC )
1195a1i 10 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
2  x.  pi )  e.  CC )
1209a1i 10 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
2  x.  pi )  =/=  0 )
121118, 119, 120divcan1d 9553 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( T  /  _i )  /  (
2  x.  pi ) )  x.  ( 2  x.  pi ) )  =  ( T  /  _i ) )
12262oveq1i 5884 . . . . . 6  |-  ( N  +  ( 1  / 
2 ) )  =  ( ( ( ( T  /  _i )  /  ( 2  x.  pi ) )  -  ( 1  /  2
) )  +  ( 1  /  2 ) )
123118, 119, 120divcld 9552 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( T  /  _i )  /  ( 2  x.  pi ) )  e.  CC )
124 1re 8853 . . . . . . . . 9  |-  1  e.  RR
125 rehalfcl 9954 . . . . . . . . 9  |-  ( 1  e.  RR  ->  (
1  /  2 )  e.  RR )
126124, 125ax-mp 8 . . . . . . . 8  |-  ( 1  /  2 )  e.  RR
127126recni 8865 . . . . . . 7  |-  ( 1  /  2 )  e.  CC
128 npcan 9076 . . . . . . 7  |-  ( ( ( ( T  /  _i )  /  (
2  x.  pi ) )  e.  CC  /\  ( 1  /  2
)  e.  CC )  ->  ( ( ( ( T  /  _i )  /  ( 2  x.  pi ) )  -  ( 1  /  2
) )  +  ( 1  /  2 ) )  =  ( ( T  /  _i )  /  ( 2  x.  pi ) ) )
129123, 127, 128sylancl 643 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( ( T  /  _i )  / 
( 2  x.  pi ) )  -  (
1  /  2 ) )  +  ( 1  /  2 ) )  =  ( ( T  /  _i )  / 
( 2  x.  pi ) ) )
130122, 129syl5eq 2340 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( N  +  ( 1  /  2 ) )  =  ( ( T  /  _i )  / 
( 2  x.  pi ) ) )
131115zred 10133 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  N  e.  RR )
132 readdcl 8836 . . . . . 6  |-  ( ( N  e.  RR  /\  ( 1  /  2
)  e.  RR )  ->  ( N  +  ( 1  /  2
) )  e.  RR )
133131, 126, 132sylancl 643 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( N  +  ( 1  /  2 ) )  e.  RR )
134130, 133eqeltrrd 2371 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( T  /  _i )  /  ( 2  x.  pi ) )  e.  RR )
135 remulcl 8838 . . . 4  |-  ( ( ( ( T  /  _i )  /  (
2  x.  pi ) )  e.  RR  /\  ( 2  x.  pi )  e.  RR )  ->  ( ( ( T  /  _i )  / 
( 2  x.  pi ) )  x.  (
2  x.  pi ) )  e.  RR )
136134, 4, 135sylancl 643 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( T  /  _i )  /  (
2  x.  pi ) )  x.  ( 2  x.  pi ) )  e.  RR )
137121, 136eqeltrrd 2371 . 2  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( T  /  _i )  e.  RR )
138115, 137jca 518 1  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( N  e.  ZZ  /\  ( T  /  _i )  e.  RR ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459    \ cdif 3162   {csn 3653   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754   _ici 8755    + caddc 8756    x. cmul 8758    - cmin 9053   -ucneg 9054    / cdiv 9439   2c2 9811   ZZcz 10040   Imcim 11599   expce 12359   picpi 12364   logclog 19928
This theorem is referenced by:  ang180lem2  20124  ang180lem3  20125
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-shft 11578  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175  df-ef 12365  df-sin 12367  df-cos 12368  df-pi 12370  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-haus 17059  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-limc 19232  df-dv 19233  df-log 19930
  Copyright terms: Public domain W3C validator