MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ang180lem2 Unicode version

Theorem ang180lem2 20124
Description: Lemma for ang180 20128. Show that the revolution number  N is strictly between  -u 2 and  1. Both bounds are established by iterating using the bounds on the imaginary part of the logarithm, logimcl 19943, but the resulting bound gives only  N  <_ 
1 for the upper bound. The case  N  =  1 is not ruled out here, but it is in some sense an "edge case" that can only happen under very specific conditions; in particular we show that all the angle arguments  A ,  1  /  ( 1  -  A ) ,  ( A  -  1 )  /  A must lie on the negative real axis, which is a contradiction because clearly if  A is negative then the other two are positive real. (Contributed by Mario Carneiro, 23-Sep-2014.)
Hypotheses
Ref Expression
ang.1  |-  F  =  ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( Im `  ( log `  ( y  /  x ) ) ) )
ang180lem1.2  |-  T  =  ( ( ( log `  ( 1  /  (
1  -  A ) ) )  +  ( log `  ( ( A  -  1 )  /  A ) ) )  +  ( log `  A ) )
ang180lem1.3  |-  N  =  ( ( ( T  /  _i )  / 
( 2  x.  pi ) )  -  (
1  /  2 ) )
Assertion
Ref Expression
ang180lem2  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u 2  <  N  /\  N  <  1 ) )
Distinct variable group:    x, y, A
Allowed substitution hints:    T( x, y)    F( x, y)    N( x, y)

Proof of Theorem ang180lem2
StepHypRef Expression
1 2cn 9832 . . . . . . 7  |-  2  e.  CC
2 1re 8853 . . . . . . . . 9  |-  1  e.  RR
3 rehalfcl 9954 . . . . . . . . 9  |-  ( 1  e.  RR  ->  (
1  /  2 )  e.  RR )
42, 3ax-mp 8 . . . . . . . 8  |-  ( 1  /  2 )  e.  RR
54recni 8865 . . . . . . 7  |-  ( 1  /  2 )  e.  CC
61, 5negsubdii 9147 . . . . . 6  |-  -u (
2  -  ( 1  /  2 ) )  =  ( -u 2  +  ( 1  / 
2 ) )
7 4d2e2 9892 . . . . . . . . 9  |-  ( 4  /  2 )  =  2
87oveq1i 5884 . . . . . . . 8  |-  ( ( 4  /  2 )  -  ( 1  / 
2 ) )  =  ( 2  -  (
1  /  2 ) )
9 4cn 9836 . . . . . . . . . 10  |-  4  e.  CC
10 ax-1cn 8811 . . . . . . . . . 10  |-  1  e.  CC
11 2ne0 9845 . . . . . . . . . . 11  |-  2  =/=  0
121, 11pm3.2i 441 . . . . . . . . . 10  |-  ( 2  e.  CC  /\  2  =/=  0 )
13 divsubdir 9472 . . . . . . . . . 10  |-  ( ( 4  e.  CC  /\  1  e.  CC  /\  (
2  e.  CC  /\  2  =/=  0 ) )  ->  ( ( 4  -  1 )  / 
2 )  =  ( ( 4  /  2
)  -  ( 1  /  2 ) ) )
149, 10, 12, 13mp3an 1277 . . . . . . . . 9  |-  ( ( 4  -  1 )  /  2 )  =  ( ( 4  / 
2 )  -  (
1  /  2 ) )
15 3cn 9834 . . . . . . . . . . 11  |-  3  e.  CC
1610, 15addcomi 9019 . . . . . . . . . . . 12  |-  ( 1  +  3 )  =  ( 3  +  1 )
17 df-4 9822 . . . . . . . . . . . 12  |-  4  =  ( 3  +  1 )
1816, 17eqtr4i 2319 . . . . . . . . . . 11  |-  ( 1  +  3 )  =  4
199, 10, 15, 18subaddrii 9151 . . . . . . . . . 10  |-  ( 4  -  1 )  =  3
2019oveq1i 5884 . . . . . . . . 9  |-  ( ( 4  -  1 )  /  2 )  =  ( 3  /  2
)
2114, 20eqtr3i 2318 . . . . . . . 8  |-  ( ( 4  /  2 )  -  ( 1  / 
2 ) )  =  ( 3  /  2
)
228, 21eqtr3i 2318 . . . . . . 7  |-  ( 2  -  ( 1  / 
2 ) )  =  ( 3  /  2
)
2322negeqi 9061 . . . . . 6  |-  -u (
2  -  ( 1  /  2 ) )  =  -u ( 3  / 
2 )
246, 23eqtr3i 2318 . . . . 5  |-  ( -u
2  +  ( 1  /  2 ) )  =  -u ( 3  / 
2 )
25 3re 9833 . . . . . . . . . . . . 13  |-  3  e.  RR
26 2re 9831 . . . . . . . . . . . . 13  |-  2  e.  RR
2725, 26, 11redivcli 9543 . . . . . . . . . . . 12  |-  ( 3  /  2 )  e.  RR
2827recni 8865 . . . . . . . . . . 11  |-  ( 3  /  2 )  e.  CC
29 pire 19848 . . . . . . . . . . . 12  |-  pi  e.  RR
3029recni 8865 . . . . . . . . . . 11  |-  pi  e.  CC
3128, 1, 30mulassi 8862 . . . . . . . . . 10  |-  ( ( ( 3  /  2
)  x.  2 )  x.  pi )  =  ( ( 3  / 
2 )  x.  (
2  x.  pi ) )
3215, 1, 11divcan1i 9520 . . . . . . . . . . 11  |-  ( ( 3  /  2 )  x.  2 )  =  3
3332oveq1i 5884 . . . . . . . . . 10  |-  ( ( ( 3  /  2
)  x.  2 )  x.  pi )  =  ( 3  x.  pi )
3431, 33eqtr3i 2318 . . . . . . . . 9  |-  ( ( 3  /  2 )  x.  ( 2  x.  pi ) )  =  ( 3  x.  pi )
3534negeqi 9061 . . . . . . . 8  |-  -u (
( 3  /  2
)  x.  ( 2  x.  pi ) )  =  -u ( 3  x.  pi )
3626, 29remulcli 8867 . . . . . . . . . 10  |-  ( 2  x.  pi )  e.  RR
3736recni 8865 . . . . . . . . 9  |-  ( 2  x.  pi )  e.  CC
3828, 37mulneg1i 9241 . . . . . . . 8  |-  ( -u ( 3  /  2
)  x.  ( 2  x.  pi ) )  =  -u ( ( 3  /  2 )  x.  ( 2  x.  pi ) )
3915, 30mulneg2i 9242 . . . . . . . 8  |-  ( 3  x.  -u pi )  = 
-u ( 3  x.  pi )
4035, 38, 393eqtr4i 2326 . . . . . . 7  |-  ( -u ( 3  /  2
)  x.  ( 2  x.  pi ) )  =  ( 3  x.  -u pi )
4129renegcli 9124 . . . . . . . . . . . 12  |-  -u pi  e.  RR
4226, 41remulcli 8867 . . . . . . . . . . 11  |-  ( 2  x.  -u pi )  e.  RR
4342a1i 10 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
2  x.  -u pi )  e.  RR )
4441a1i 10 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  -u pi  e.  RR )
45 simp1 955 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  A  e.  CC )
46 subcl 9067 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  -  A
)  e.  CC )
4710, 45, 46sylancr 644 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
1  -  A )  e.  CC )
48 simp3 957 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  A  =/=  1 )
4948necomd 2542 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  1  =/=  A )
50 subeq0 9089 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( ( 1  -  A )  =  0  <->  1  =  A ) )
5110, 45, 50sylancr 644 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( 1  -  A
)  =  0  <->  1  =  A ) )
5251necon3bid 2494 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( 1  -  A
)  =/=  0  <->  1  =/=  A ) )
5349, 52mpbird 223 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
1  -  A )  =/=  0 )
5447, 53reccld 9545 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
1  /  ( 1  -  A ) )  e.  CC )
5547, 53recne0d 9546 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
1  /  ( 1  -  A ) )  =/=  0 )
56 logcl 19942 . . . . . . . . . . . . 13  |-  ( ( ( 1  /  (
1  -  A ) )  e.  CC  /\  ( 1  /  (
1  -  A ) )  =/=  0 )  ->  ( log `  (
1  /  ( 1  -  A ) ) )  e.  CC )
5754, 55, 56syl2anc 642 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( log `  ( 1  / 
( 1  -  A
) ) )  e.  CC )
58 subcl 9067 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A  -  1 )  e.  CC )
5945, 10, 58sylancl 643 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( A  -  1 )  e.  CC )
60 simp2 956 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  A  =/=  0 )
6159, 45, 60divcld 9552 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( A  -  1 )  /  A )  e.  CC )
62 subeq0 9089 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  - 
1 )  =  0  <-> 
A  =  1 ) )
6345, 10, 62sylancl 643 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( A  -  1 )  =  0  <->  A  =  1 ) )
6463necon3bid 2494 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( A  -  1 )  =/=  0  <->  A  =/=  1 ) )
6548, 64mpbird 223 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( A  -  1 )  =/=  0 )
6659, 45, 65, 60divne0d 9568 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( A  -  1 )  /  A )  =/=  0 )
67 logcl 19942 . . . . . . . . . . . . 13  |-  ( ( ( ( A  - 
1 )  /  A
)  e.  CC  /\  ( ( A  - 
1 )  /  A
)  =/=  0 )  ->  ( log `  (
( A  -  1 )  /  A ) )  e.  CC )
6861, 66, 67syl2anc 642 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( log `  ( ( A  -  1 )  /  A ) )  e.  CC )
6957, 68addcld 8870 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) )  e.  CC )
7069imcld 11696 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
Im `  ( ( log `  ( 1  / 
( 1  -  A
) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) )  e.  RR )
71 logcl 19942 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( log `  A
)  e.  CC )
72713adant3 975 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( log `  A )  e.  CC )
7372imcld 11696 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
Im `  ( log `  A ) )  e.  RR )
7457imcld 11696 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
Im `  ( log `  ( 1  /  (
1  -  A ) ) ) )  e.  RR )
7568imcld 11696 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
Im `  ( log `  ( ( A  - 
1 )  /  A
) ) )  e.  RR )
76 logimcl 19943 . . . . . . . . . . . . . 14  |-  ( ( ( 1  /  (
1  -  A ) )  e.  CC  /\  ( 1  /  (
1  -  A ) )  =/=  0 )  ->  ( -u pi  <  ( Im `  ( log `  ( 1  / 
( 1  -  A
) ) ) )  /\  ( Im `  ( log `  ( 1  /  ( 1  -  A ) ) ) )  <_  pi )
)
7754, 55, 76syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u pi  <  ( Im
`  ( log `  (
1  /  ( 1  -  A ) ) ) )  /\  (
Im `  ( log `  ( 1  /  (
1  -  A ) ) ) )  <_  pi ) )
7877simpld 445 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  -u pi  <  ( Im `  ( log `  ( 1  / 
( 1  -  A
) ) ) ) )
79 logimcl 19943 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  - 
1 )  /  A
)  e.  CC  /\  ( ( A  - 
1 )  /  A
)  =/=  0 )  ->  ( -u pi  <  ( Im `  ( log `  ( ( A  -  1 )  /  A ) ) )  /\  ( Im `  ( log `  ( ( A  -  1 )  /  A ) ) )  <_  pi )
)
8061, 66, 79syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u pi  <  ( Im
`  ( log `  (
( A  -  1 )  /  A ) ) )  /\  (
Im `  ( log `  ( ( A  - 
1 )  /  A
) ) )  <_  pi ) )
8180simpld 445 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  -u pi  <  ( Im `  ( log `  ( ( A  -  1 )  /  A ) ) ) )
8244, 44, 74, 75, 78, 81lt2addd 9410 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u pi  +  -u pi )  <  ( ( Im
`  ( log `  (
1  /  ( 1  -  A ) ) ) )  +  ( Im `  ( log `  ( ( A  - 
1 )  /  A
) ) ) ) )
8330negcli 9130 . . . . . . . . . . . . 13  |-  -u pi  e.  CC
84832timesi 9861 . . . . . . . . . . . 12  |-  ( 2  x.  -u pi )  =  ( -u pi  +  -u pi )
8584a1i 10 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
2  x.  -u pi )  =  ( -u pi  +  -u pi ) )
8657, 68imaddd 11716 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
Im `  ( ( log `  ( 1  / 
( 1  -  A
) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) )  =  ( ( Im `  ( log `  ( 1  /  ( 1  -  A ) ) ) )  +  ( Im
`  ( log `  (
( A  -  1 )  /  A ) ) ) ) )
8782, 85, 863brtr4d 4069 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
2  x.  -u pi )  <  ( Im `  ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) ) )
88 logimcl 19943 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( -u pi  <  (
Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi ) )
89883adant3 975 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u pi  <  ( Im
`  ( log `  A
) )  /\  (
Im `  ( log `  A ) )  <_  pi ) )
9089simpld 445 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  -u pi  <  ( Im `  ( log `  A ) ) )
9143, 44, 70, 73, 87, 90lt2addd 9410 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( 2  x.  -u pi )  +  -u pi )  <  ( ( Im
`  ( ( log `  ( 1  /  (
1  -  A ) ) )  +  ( log `  ( ( A  -  1 )  /  A ) ) ) )  +  ( Im `  ( log `  A ) ) ) )
92 df-3 9821 . . . . . . . . . . . 12  |-  3  =  ( 2  +  1 )
9392oveq1i 5884 . . . . . . . . . . 11  |-  ( 3  x.  -u pi )  =  ( ( 2  +  1 )  x.  -u pi )
941, 10, 83adddiri 8864 . . . . . . . . . . 11  |-  ( ( 2  +  1 )  x.  -u pi )  =  ( ( 2  x.  -u pi )  +  ( 1  x.  -u pi ) )
9583mulid2i 8856 . . . . . . . . . . . 12  |-  ( 1  x.  -u pi )  = 
-u pi
9695oveq2i 5885 . . . . . . . . . . 11  |-  ( ( 2  x.  -u pi )  +  ( 1  x.  -u pi ) )  =  ( ( 2  x.  -u pi )  + 
-u pi )
9793, 94, 963eqtri 2320 . . . . . . . . . 10  |-  ( 3  x.  -u pi )  =  ( ( 2  x.  -u pi )  +  -u pi )
9897a1i 10 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
3  x.  -u pi )  =  ( (
2  x.  -u pi )  +  -u pi ) )
99 ang180lem1.2 . . . . . . . . . . 11  |-  T  =  ( ( ( log `  ( 1  /  (
1  -  A ) ) )  +  ( log `  ( ( A  -  1 )  /  A ) ) )  +  ( log `  A ) )
10099fveq2i 5544 . . . . . . . . . 10  |-  ( Im
`  T )  =  ( Im `  (
( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) )  +  ( log `  A
) ) )
10169, 72imaddd 11716 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
Im `  ( (
( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) )  +  ( log `  A
) ) )  =  ( ( Im `  ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) )  +  ( Im `  ( log `  A ) ) ) )
102100, 101syl5eq 2340 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
Im `  T )  =  ( ( Im
`  ( ( log `  ( 1  /  (
1  -  A ) ) )  +  ( log `  ( ( A  -  1 )  /  A ) ) ) )  +  ( Im `  ( log `  A ) ) ) )
10391, 98, 1023brtr4d 4069 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
3  x.  -u pi )  <  ( Im `  T ) )
10469, 72addcld 8870 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) )  +  ( log `  A
) )  e.  CC )
10599, 104syl5eqel 2380 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  T  e.  CC )
106 imval 11608 . . . . . . . . . 10  |-  ( T  e.  CC  ->  (
Im `  T )  =  ( Re `  ( T  /  _i ) ) )
107105, 106syl 15 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
Im `  T )  =  ( Re `  ( T  /  _i ) ) )
108 ang.1 . . . . . . . . . . . 12  |-  F  =  ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( Im `  ( log `  ( y  /  x ) ) ) )
109 ang180lem1.3 . . . . . . . . . . . 12  |-  N  =  ( ( ( T  /  _i )  / 
( 2  x.  pi ) )  -  (
1  /  2 ) )
110108, 99, 109ang180lem1 20123 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( N  e.  ZZ  /\  ( T  /  _i )  e.  RR ) )
111110simprd 449 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( T  /  _i )  e.  RR )
112111rered 11725 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
Re `  ( T  /  _i ) )  =  ( T  /  _i ) )
113107, 112eqtrd 2328 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
Im `  T )  =  ( T  /  _i ) )
114103, 113breqtrd 4063 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
3  x.  -u pi )  <  ( T  /  _i ) )
11540, 114syl5eqbr 4072 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u ( 3  /  2
)  x.  ( 2  x.  pi ) )  <  ( T  /  _i ) )
11627renegcli 9124 . . . . . . . 8  |-  -u (
3  /  2 )  e.  RR
117116a1i 10 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  -u (
3  /  2 )  e.  RR )
11836a1i 10 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
2  x.  pi )  e.  RR )
119 2pos 9844 . . . . . . . . 9  |-  0  <  2
120 pipos 19849 . . . . . . . . 9  |-  0  <  pi
12126, 29, 119, 120mulgt0ii 8968 . . . . . . . 8  |-  0  <  ( 2  x.  pi )
122121a1i 10 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  0  <  ( 2  x.  pi ) )
123 ltmuldiv 9642 . . . . . . 7  |-  ( (
-u ( 3  / 
2 )  e.  RR  /\  ( T  /  _i )  e.  RR  /\  (
( 2  x.  pi )  e.  RR  /\  0  <  ( 2  x.  pi ) ) )  -> 
( ( -u (
3  /  2 )  x.  ( 2  x.  pi ) )  < 
( T  /  _i ) 
<-> 
-u ( 3  / 
2 )  <  (
( T  /  _i )  /  ( 2  x.  pi ) ) ) )
124117, 111, 118, 122, 123syl112anc 1186 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( -u ( 3  / 
2 )  x.  (
2  x.  pi ) )  <  ( T  /  _i )  <->  -u ( 3  /  2 )  < 
( ( T  /  _i )  /  (
2  x.  pi ) ) ) )
125115, 124mpbid 201 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  -u (
3  /  2 )  <  ( ( T  /  _i )  / 
( 2  x.  pi ) ) )
12624, 125syl5eqbr 4072 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u 2  +  ( 1  /  2 ) )  <  ( ( T  /  _i )  / 
( 2  x.  pi ) ) )
12726renegcli 9124 . . . . . 6  |-  -u 2  e.  RR
128127a1i 10 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  -u 2  e.  RR )
1294a1i 10 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
1  /  2 )  e.  RR )
13036, 121gt0ne0ii 9325 . . . . . . 7  |-  ( 2  x.  pi )  =/=  0
131130a1i 10 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
2  x.  pi )  =/=  0 )
132111, 118, 131redivcld 9604 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( T  /  _i )  /  ( 2  x.  pi ) )  e.  RR )
133128, 129, 132ltaddsubd 9388 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( -u 2  +  ( 1  /  2 ) )  <  ( ( T  /  _i )  /  ( 2  x.  pi ) )  <->  -u 2  < 
( ( ( T  /  _i )  / 
( 2  x.  pi ) )  -  (
1  /  2 ) ) ) )
134126, 133mpbid 201 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  -u 2  <  ( ( ( T  /  _i )  / 
( 2  x.  pi ) )  -  (
1  /  2 ) ) )
135134, 109syl6breqr 4079 . 2  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  -u 2  <  N )
13629a1i 10 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  pi  e.  RR )
13777simprd 449 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
Im `  ( log `  ( 1  /  (
1  -  A ) ) ) )  <_  pi )
13880simprd 449 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
Im `  ( log `  ( ( A  - 
1 )  /  A
) ) )  <_  pi )
13974, 75, 136, 136, 137, 138le2addd 9406 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( Im `  ( log `  ( 1  / 
( 1  -  A
) ) ) )  +  ( Im `  ( log `  ( ( A  -  1 )  /  A ) ) ) )  <_  (
pi  +  pi ) )
140302timesi 9861 . . . . . . . . . . . 12  |-  ( 2  x.  pi )  =  ( pi  +  pi )
141140a1i 10 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
2  x.  pi )  =  ( pi  +  pi ) )
142139, 86, 1413brtr4d 4069 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
Im `  ( ( log `  ( 1  / 
( 1  -  A
) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) )  <_ 
( 2  x.  pi ) )
14389simprd 449 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
Im `  ( log `  A ) )  <_  pi )
14470, 73, 118, 136, 142, 143le2addd 9406 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( Im `  (
( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) )  +  ( Im `  ( log `  A ) ) )  <_  (
( 2  x.  pi )  +  pi )
)
145113, 102eqtr3d 2330 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( T  /  _i )  =  ( ( Im `  ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) )  +  ( Im `  ( log `  A ) ) ) )
14692oveq1i 5884 . . . . . . . . . . 11  |-  ( 3  x.  pi )  =  ( ( 2  +  1 )  x.  pi )
1471, 10, 30adddiri 8864 . . . . . . . . . . 11  |-  ( ( 2  +  1 )  x.  pi )  =  ( ( 2  x.  pi )  +  ( 1  x.  pi ) )
14830mulid2i 8856 . . . . . . . . . . . 12  |-  ( 1  x.  pi )  =  pi
149148oveq2i 5885 . . . . . . . . . . 11  |-  ( ( 2  x.  pi )  +  ( 1  x.  pi ) )  =  ( ( 2  x.  pi )  +  pi )
150146, 147, 1493eqtri 2320 . . . . . . . . . 10  |-  ( 3  x.  pi )  =  ( ( 2  x.  pi )  +  pi )
151150a1i 10 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
3  x.  pi )  =  ( ( 2  x.  pi )  +  pi ) )
152144, 145, 1513brtr4d 4069 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( T  /  _i )  <_ 
( 3  x.  pi ) )
15337subid1i 9134 . . . . . . . . . 10  |-  ( ( 2  x.  pi )  -  0 )  =  ( 2  x.  pi )
154153, 130eqnetri 2476 . . . . . . . . 9  |-  ( ( 2  x.  pi )  -  0 )  =/=  0
155 negsub 9111 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  +  -u A )  =  ( 1  -  A ) )
15610, 45, 155sylancr 644 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
1  +  -u A
)  =  ( 1  -  A ) )
157156adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( 1  +  -u A )  =  ( 1  -  A
) )
158 1rp 10374 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  RR+
159151, 145oveq12d 5892 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( 3  x.  pi )  -  ( T  /  _i ) )  =  ( ( ( 2  x.  pi )  +  pi )  -  (
( Im `  (
( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) )  +  ( Im `  ( log `  A ) ) ) ) )
16037a1i 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
2  x.  pi )  e.  CC )
16130a1i 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  pi  e.  CC )
16270recnd 8877 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
Im `  ( ( log `  ( 1  / 
( 1  -  A
) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) )  e.  CC )
16373recnd 8877 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
Im `  ( log `  A ) )  e.  CC )
164160, 161, 162, 163addsub4d 9220 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( 2  x.  pi )  +  pi )  -  ( (
Im `  ( ( log `  ( 1  / 
( 1  -  A
) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) )  +  ( Im `  ( log `  A ) ) ) )  =  ( ( ( 2  x.  pi )  -  (
Im `  ( ( log `  ( 1  / 
( 1  -  A
) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) ) )  +  ( pi  -  ( Im `  ( log `  A ) ) ) ) )
165159, 164eqtrd 2328 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( 3  x.  pi )  -  ( T  /  _i ) )  =  ( ( ( 2  x.  pi )  -  ( Im `  ( ( log `  ( 1  /  ( 1  -  A ) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) ) )  +  ( pi  -  ( Im `  ( log `  A ) ) ) ) )
166165adantr 451 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( (
3  x.  pi )  -  ( T  /  _i ) )  =  ( ( ( 2  x.  pi )  -  (
Im `  ( ( log `  ( 1  / 
( 1  -  A
) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) ) )  +  ( pi  -  ( Im `  ( log `  A ) ) ) ) )
16725, 29remulcli 8867 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( 3  x.  pi )  e.  RR
168167recni 8865 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( 3  x.  pi )  e.  CC
169 ax-icn 8812 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  _i  e.  CC
170169a1i 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  _i  e.  CC )
171 ine0 9231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  _i  =/=  0
172171a1i 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  _i  =/=  0 )
173105, 170, 172divcld 9552 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( T  /  _i )  e.  CC )
174 subeq0 9089 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( 3  x.  pi )  e.  CC  /\  ( T  /  _i )  e.  CC )  ->  (
( ( 3  x.  pi )  -  ( T  /  _i ) )  =  0  <->  ( 3  x.  pi )  =  ( T  /  _i ) ) )
175168, 173, 174sylancr 644 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( 3  x.  pi )  -  ( T  /  _i ) )  =  0  <->  ( 3  x.  pi )  =  ( T  /  _i ) ) )
176175biimpar 471 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( (
3  x.  pi )  -  ( T  /  _i ) )  =  0 )
177166, 176eqtr3d 2330 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( (
( 2  x.  pi )  -  ( Im `  ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) ) )  +  ( pi 
-  ( Im `  ( log `  A ) ) ) )  =  0 )
178 resubcl 9127 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( 2  x.  pi )  e.  RR  /\  (
Im `  ( ( log `  ( 1  / 
( 1  -  A
) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) )  e.  RR )  ->  (
( 2  x.  pi )  -  ( Im `  ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) ) )  e.  RR )
17936, 70, 178sylancr 644 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( 2  x.  pi )  -  ( Im `  ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) ) )  e.  RR )
180 subge0 9303 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( 2  x.  pi )  e.  RR  /\  (
Im `  ( ( log `  ( 1  / 
( 1  -  A
) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) )  e.  RR )  ->  (
0  <_  ( (
2  x.  pi )  -  ( Im `  ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) ) )  <->  ( Im `  ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) )  <_  ( 2  x.  pi ) ) )
18136, 70, 180sylancr 644 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
0  <_  ( (
2  x.  pi )  -  ( Im `  ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) ) )  <->  ( Im `  ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) )  <_  ( 2  x.  pi ) ) )
182142, 181mpbird 223 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  0  <_  ( ( 2  x.  pi )  -  (
Im `  ( ( log `  ( 1  / 
( 1  -  A
) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) ) ) )
183 resubcl 9127 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( pi  e.  RR  /\  ( Im `  ( log `  A ) )  e.  RR )  ->  (
pi  -  ( Im `  ( log `  A
) ) )  e.  RR )
18429, 73, 183sylancr 644 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
pi  -  ( Im `  ( log `  A
) ) )  e.  RR )
185 subge0 9303 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( pi  e.  RR  /\  ( Im `  ( log `  A ) )  e.  RR )  ->  (
0  <_  ( pi  -  ( Im `  ( log `  A ) ) )  <->  ( Im `  ( log `  A ) )  <_  pi )
)
18629, 73, 185sylancr 644 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
0  <_  ( pi  -  ( Im `  ( log `  A ) ) )  <->  ( Im `  ( log `  A ) )  <_  pi )
)
187143, 186mpbird 223 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  0  <_  ( pi  -  (
Im `  ( log `  A ) ) ) )
188 add20 9302 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( 2  x.  pi )  -  ( Im `  ( ( log `  ( 1  /  ( 1  -  A ) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) ) )  e.  RR  /\  0  <_  ( ( 2  x.  pi )  -  (
Im `  ( ( log `  ( 1  / 
( 1  -  A
) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) ) ) )  /\  ( ( pi  -  ( Im
`  ( log `  A
) ) )  e.  RR  /\  0  <_ 
( pi  -  (
Im `  ( log `  A ) ) ) ) )  ->  (
( ( ( 2  x.  pi )  -  ( Im `  ( ( log `  ( 1  /  ( 1  -  A ) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) ) )  +  ( pi  -  ( Im `  ( log `  A ) ) ) )  =  0  <->  (
( ( 2  x.  pi )  -  (
Im `  ( ( log `  ( 1  / 
( 1  -  A
) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) ) )  =  0  /\  (
pi  -  ( Im `  ( log `  A
) ) )  =  0 ) ) )
189179, 182, 184, 187, 188syl22anc 1183 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( ( 2  x.  pi )  -  ( Im `  ( ( log `  ( 1  /  ( 1  -  A ) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) ) )  +  ( pi  -  ( Im `  ( log `  A ) ) ) )  =  0  <->  (
( ( 2  x.  pi )  -  (
Im `  ( ( log `  ( 1  / 
( 1  -  A
) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) ) )  =  0  /\  (
pi  -  ( Im `  ( log `  A
) ) )  =  0 ) ) )
190189biimpa 470 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( ( ( 2  x.  pi )  -  ( Im `  ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) ) )  +  ( pi 
-  ( Im `  ( log `  A ) ) ) )  =  0 )  ->  (
( ( 2  x.  pi )  -  (
Im `  ( ( log `  ( 1  / 
( 1  -  A
) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) ) )  =  0  /\  (
pi  -  ( Im `  ( log `  A
) ) )  =  0 ) )
191177, 190syldan 456 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( (
( 2  x.  pi )  -  ( Im `  ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) ) )  =  0  /\  ( pi  -  (
Im `  ( log `  A ) ) )  =  0 ) )
192191simprd 449 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( pi  -  ( Im `  ( log `  A ) ) )  =  0 )
193163adantr 451 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( Im `  ( log `  A
) )  e.  CC )
194 subeq0 9089 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( pi  e.  CC  /\  ( Im `  ( log `  A ) )  e.  CC )  ->  (
( pi  -  (
Im `  ( log `  A ) ) )  =  0  <->  pi  =  ( Im `  ( log `  A ) ) ) )
19530, 193, 194sylancr 644 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( (
pi  -  ( Im `  ( log `  A
) ) )  =  0  <->  pi  =  (
Im `  ( log `  A ) ) ) )
196192, 195mpbid 201 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  pi  =  ( Im `  ( log `  A ) ) )
197196eqcomd 2301 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( Im `  ( log `  A
) )  =  pi )
198 lognegb 19959 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( -u A  e.  RR+  <->  (
Im `  ( log `  A ) )  =  pi ) )
1991983adant3 975 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u A  e.  RR+  <->  ( Im `  ( log `  A
) )  =  pi ) )
200199adantr 451 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( -u A  e.  RR+  <->  ( Im `  ( log `  A ) )  =  pi ) )
201197, 200mpbird 223 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  -u A  e.  RR+ )
202 rpaddcl 10390 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  RR+  /\  -u A  e.  RR+ )  ->  (
1  +  -u A
)  e.  RR+ )
203158, 201, 202sylancr 644 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( 1  +  -u A )  e.  RR+ )
204157, 203eqeltrrd 2371 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( 1  -  A )  e.  RR+ )
205204rpreccld 10416 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( 1  /  ( 1  -  A ) )  e.  RR+ )
206205relogcld 19990 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( log `  ( 1  /  (
1  -  A ) ) )  e.  RR )
207 negsubdi2 9122 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  CC  /\  1  e.  CC )  -> 
-u ( A  - 
1 )  =  ( 1  -  A ) )
20845, 10, 207sylancl 643 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  -u ( A  -  1 )  =  ( 1  -  A ) )
209208oveq1d 5889 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u ( A  -  1 )  /  -u A
)  =  ( ( 1  -  A )  /  -u A ) )
21059, 45, 60div2negd 9567 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u ( A  -  1 )  /  -u A
)  =  ( ( A  -  1 )  /  A ) )
211209, 210eqtr3d 2330 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( 1  -  A
)  /  -u A
)  =  ( ( A  -  1 )  /  A ) )
212211adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( (
1  -  A )  /  -u A )  =  ( ( A  - 
1 )  /  A
) )
213204, 201rpdivcld 10423 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( (
1  -  A )  /  -u A )  e.  RR+ )
214212, 213eqeltrrd 2371 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( ( A  -  1 )  /  A )  e.  RR+ )
215214relogcld 19990 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( log `  ( ( A  - 
1 )  /  A
) )  e.  RR )
216206, 215readdcld 8878 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( ( log `  ( 1  / 
( 1  -  A
) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) )  e.  RR )
217216reim0d 11726 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( Im `  ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) )  =  0 )
218217oveq2d 5890 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( (
2  x.  pi )  -  ( Im `  ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) ) )  =  ( ( 2  x.  pi )  -  0 ) )
219191simpld 445 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( (
2  x.  pi )  -  ( Im `  ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) ) )  =  0 )
220218, 219eqtr3d 2330 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( (
2  x.  pi )  -  0 )  =  0 )
221220ex 423 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( 3  x.  pi )  =  ( T  /  _i )  ->  (
( 2  x.  pi )  -  0 )  =  0 ) )
222221necon3d 2497 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( 2  x.  pi )  -  0 )  =/=  0  -> 
( 3  x.  pi )  =/=  ( T  /  _i ) ) )
223154, 222mpi 16 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
3  x.  pi )  =/=  ( T  /  _i ) )
224 ltlen 8938 . . . . . . . . 9  |-  ( ( ( T  /  _i )  e.  RR  /\  (
3  x.  pi )  e.  RR )  -> 
( ( T  /  _i )  <  ( 3  x.  pi )  <->  ( ( T  /  _i )  <_ 
( 3  x.  pi )  /\  ( 3  x.  pi )  =/=  ( T  /  _i ) ) ) )
225111, 167, 224sylancl 643 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( T  /  _i )  <  ( 3  x.  pi )  <->  ( ( T  /  _i )  <_ 
( 3  x.  pi )  /\  ( 3  x.  pi )  =/=  ( T  /  _i ) ) ) )
226152, 223, 225mpbir2and 888 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( T  /  _i )  < 
( 3  x.  pi ) )
227226, 34syl6breqr 4079 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( T  /  _i )  < 
( ( 3  / 
2 )  x.  (
2  x.  pi ) ) )
22827a1i 10 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
3  /  2 )  e.  RR )
229 ltdivmul2 9647 . . . . . . 7  |-  ( ( ( T  /  _i )  e.  RR  /\  (
3  /  2 )  e.  RR  /\  (
( 2  x.  pi )  e.  RR  /\  0  <  ( 2  x.  pi ) ) )  -> 
( ( ( T  /  _i )  / 
( 2  x.  pi ) )  <  (
3  /  2 )  <-> 
( T  /  _i )  <  ( ( 3  /  2 )  x.  ( 2  x.  pi ) ) ) )
230111, 228, 118, 122, 229syl112anc 1186 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( T  /  _i )  /  (
2  x.  pi ) )  <  ( 3  /  2 )  <->  ( T  /  _i )  <  (
( 3  /  2
)  x.  ( 2  x.  pi ) ) ) )
231227, 230mpbird 223 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( T  /  _i )  /  ( 2  x.  pi ) )  < 
( 3  /  2
) )
23292oveq1i 5884 . . . . . 6  |-  ( 3  /  2 )  =  ( ( 2  +  1 )  /  2
)
2331, 10, 1, 11divdiri 9533 . . . . . 6  |-  ( ( 2  +  1 )  /  2 )  =  ( ( 2  / 
2 )  +  ( 1  /  2 ) )
2341, 11dividi 9509 . . . . . . 7  |-  ( 2  /  2 )  =  1
235234oveq1i 5884 . . . . . 6  |-  ( ( 2  /  2 )  +  ( 1  / 
2 ) )  =  ( 1  +  ( 1  /  2 ) )
236232, 233, 2353eqtri 2320 . . . . 5  |-  ( 3  /  2 )  =  ( 1  +  ( 1  /  2 ) )
237231, 236syl6breq 4078 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( T  /  _i )  /  ( 2  x.  pi ) )  < 
( 1  +  ( 1  /  2 ) ) )
2382a1i 10 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  1  e.  RR )
239132, 129, 238ltsubaddd 9384 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( ( T  /  _i )  / 
( 2  x.  pi ) )  -  (
1  /  2 ) )  <  1  <->  (
( T  /  _i )  /  ( 2  x.  pi ) )  < 
( 1  +  ( 1  /  2 ) ) ) )
240237, 239mpbird 223 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( T  /  _i )  /  (
2  x.  pi ) )  -  ( 1  /  2 ) )  <  1 )
241109, 240syl5eqbr 4072 . 2  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  N  <  1 )
242135, 241jca 518 1  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u 2  <  N  /\  N  <  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459    \ cdif 3162   {csn 3653   class class class wbr 4039   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754   _ici 8755    + caddc 8756    x. cmul 8758    < clt 8883    <_ cle 8884    - cmin 9053   -ucneg 9054    / cdiv 9439   2c2 9811   3c3 9812   4c4 9813   ZZcz 10040   RR+crp 10370   Recre 11598   Imcim 11599   picpi 12364   logclog 19928
This theorem is referenced by:  ang180lem3  20125
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-shft 11578  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175  df-ef 12365  df-sin 12367  df-cos 12368  df-pi 12370  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-haus 17059  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-limc 19232  df-dv 19233  df-log 19930
  Copyright terms: Public domain W3C validator