MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ang180lem3 Unicode version

Theorem ang180lem3 20109
Description: Lemma for ang180 20112. Since ang180lem1 20107 shows that  N is an integer and ang180lem2 20108 shows that  N is strictly between  -u 2 and  1, it follows that  N  e.  { -u 1 ,  0 }, and these two cases correspond to the two possible values for  T. (Contributed by Mario Carneiro, 23-Sep-2014.)
Hypotheses
Ref Expression
ang.1  |-  F  =  ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( Im `  ( log `  ( y  /  x ) ) ) )
ang180lem1.2  |-  T  =  ( ( ( log `  ( 1  /  (
1  -  A ) ) )  +  ( log `  ( ( A  -  1 )  /  A ) ) )  +  ( log `  A ) )
ang180lem1.3  |-  N  =  ( ( ( T  /  _i )  / 
( 2  x.  pi ) )  -  (
1  /  2 ) )
Assertion
Ref Expression
ang180lem3  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  T  e.  { -u ( _i  x.  pi ) ,  ( _i  x.  pi ) } )
Distinct variable group:    x, y, A
Allowed substitution hints:    T( x, y)    F( x, y)    N( x, y)

Proof of Theorem ang180lem3
StepHypRef Expression
1 2cn 9816 . . . . . . . . . 10  |-  2  e.  CC
2 pire 19832 . . . . . . . . . . 11  |-  pi  e.  RR
32recni 8849 . . . . . . . . . 10  |-  pi  e.  CC
41, 3mulcli 8842 . . . . . . . . 9  |-  ( 2  x.  pi )  e.  CC
5 2ne0 9829 . . . . . . . . 9  |-  2  =/=  0
64, 1, 5divreci 9505 . . . . . . . 8  |-  ( ( 2  x.  pi )  /  2 )  =  ( ( 2  x.  pi )  x.  (
1  /  2 ) )
73, 1, 5divcan3i 9506 . . . . . . . 8  |-  ( ( 2  x.  pi )  /  2 )  =  pi
86, 7eqtr3i 2305 . . . . . . 7  |-  ( ( 2  x.  pi )  x.  ( 1  / 
2 ) )  =  pi
9 ang180lem1.3 . . . . . . . . . 10  |-  N  =  ( ( ( T  /  _i )  / 
( 2  x.  pi ) )  -  (
1  /  2 ) )
10 ang.1 . . . . . . . . . . . . . . . 16  |-  F  =  ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( Im `  ( log `  ( y  /  x ) ) ) )
11 ang180lem1.2 . . . . . . . . . . . . . . . 16  |-  T  =  ( ( ( log `  ( 1  /  (
1  -  A ) ) )  +  ( log `  ( ( A  -  1 )  /  A ) ) )  +  ( log `  A ) )
1210, 11, 9ang180lem2 20108 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u 2  <  N  /\  N  <  1 ) )
1312simprd 449 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  N  <  1 )
14 1e0p1 10152 . . . . . . . . . . . . . 14  |-  1  =  ( 0  +  1 )
1513, 14syl6breq 4062 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  N  <  ( 0  +  1 ) )
1610, 11, 9ang180lem1 20107 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( N  e.  ZZ  /\  ( T  /  _i )  e.  RR ) )
1716simpld 445 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  N  e.  ZZ )
18 0z 10035 . . . . . . . . . . . . . 14  |-  0  e.  ZZ
19 zleltp1 10068 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  ->  ( N  <_  0  <->  N  <  ( 0  +  1 ) ) )
2017, 18, 19sylancl 643 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( N  <_  0  <->  N  <  ( 0  +  1 ) ) )
2115, 20mpbird 223 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  N  <_  0 )
2221adantr 451 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  N  <_  0 )
23 zlem1lt 10069 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  <_  N  <->  ( 0  -  1 )  <  N ) )
2418, 17, 23sylancr 644 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
0  <_  N  <->  ( 0  -  1 )  < 
N ) )
25 df-neg 9040 . . . . . . . . . . . . . 14  |-  -u 1  =  ( 0  -  1 )
2625breq1i 4030 . . . . . . . . . . . . 13  |-  ( -u
1  <  N  <->  ( 0  -  1 )  < 
N )
2724, 26syl6bbr 254 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
0  <_  N  <->  -u 1  < 
N ) )
2827biimpar 471 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  0  <_  N )
2917zred 10117 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  N  e.  RR )
3029adantr 451 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  N  e.  RR )
31 0re 8838 . . . . . . . . . . . 12  |-  0  e.  RR
32 letri3 8907 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  0  e.  RR )  ->  ( N  =  0  <-> 
( N  <_  0  /\  0  <_  N ) ) )
3330, 31, 32sylancl 643 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  ( N  =  0  <->  ( N  <_  0  /\  0  <_  N ) ) )
3422, 28, 33mpbir2and 888 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  N  = 
0 )
359, 34syl5eqr 2329 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  ( (
( T  /  _i )  /  ( 2  x.  pi ) )  -  ( 1  /  2
) )  =  0 )
36 ax-1cn 8795 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  CC
37 simp1 955 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  A  e.  CC )
38 subcl 9051 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  -  A
)  e.  CC )
3936, 37, 38sylancr 644 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
1  -  A )  e.  CC )
40 simp3 957 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  A  =/=  1 )
4140necomd 2529 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  1  =/=  A )
42 subeq0 9073 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( ( 1  -  A )  =  0  <->  1  =  A ) )
4336, 37, 42sylancr 644 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( 1  -  A
)  =  0  <->  1  =  A ) )
4443necon3bid 2481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( 1  -  A
)  =/=  0  <->  1  =/=  A ) )
4541, 44mpbird 223 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
1  -  A )  =/=  0 )
4639, 45reccld 9529 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
1  /  ( 1  -  A ) )  e.  CC )
4739, 45recne0d 9530 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
1  /  ( 1  -  A ) )  =/=  0 )
48 logcl 19926 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 1  /  (
1  -  A ) )  e.  CC  /\  ( 1  /  (
1  -  A ) )  =/=  0 )  ->  ( log `  (
1  /  ( 1  -  A ) ) )  e.  CC )
4946, 47, 48syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( log `  ( 1  / 
( 1  -  A
) ) )  e.  CC )
50 subcl 9051 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A  -  1 )  e.  CC )
5137, 36, 50sylancl 643 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( A  -  1 )  e.  CC )
52 simp2 956 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  A  =/=  0 )
5351, 37, 52divcld 9536 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( A  -  1 )  /  A )  e.  CC )
54 subeq0 9073 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  - 
1 )  =  0  <-> 
A  =  1 ) )
5537, 36, 54sylancl 643 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( A  -  1 )  =  0  <->  A  =  1 ) )
5655necon3bid 2481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( A  -  1 )  =/=  0  <->  A  =/=  1 ) )
5740, 56mpbird 223 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( A  -  1 )  =/=  0 )
5851, 37, 57, 52divne0d 9552 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( A  -  1 )  /  A )  =/=  0 )
59 logcl 19926 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  - 
1 )  /  A
)  e.  CC  /\  ( ( A  - 
1 )  /  A
)  =/=  0 )  ->  ( log `  (
( A  -  1 )  /  A ) )  e.  CC )
6053, 58, 59syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( log `  ( ( A  -  1 )  /  A ) )  e.  CC )
6149, 60addcld 8854 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) )  e.  CC )
62 logcl 19926 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( log `  A
)  e.  CC )
63623adant3 975 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( log `  A )  e.  CC )
6461, 63addcld 8854 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) )  +  ( log `  A
) )  e.  CC )
6511, 64syl5eqel 2367 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  T  e.  CC )
66 ax-icn 8796 . . . . . . . . . . . . . 14  |-  _i  e.  CC
6766a1i 10 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  _i  e.  CC )
68 ine0 9215 . . . . . . . . . . . . . 14  |-  _i  =/=  0
6968a1i 10 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  _i  =/=  0 )
7065, 67, 69divcld 9536 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( T  /  _i )  e.  CC )
714a1i 10 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
2  x.  pi )  e.  CC )
72 pipos 19833 . . . . . . . . . . . . . . 15  |-  0  <  pi
732, 72gt0ne0ii 9309 . . . . . . . . . . . . . 14  |-  pi  =/=  0
741, 3, 5, 73mulne0i 9411 . . . . . . . . . . . . 13  |-  ( 2  x.  pi )  =/=  0
7574a1i 10 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
2  x.  pi )  =/=  0 )
7670, 71, 75divcld 9536 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( T  /  _i )  /  ( 2  x.  pi ) )  e.  CC )
7776adantr 451 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  ( ( T  /  _i )  / 
( 2  x.  pi ) )  e.  CC )
78 1re 8837 . . . . . . . . . . . 12  |-  1  e.  RR
79 rehalfcl 9938 . . . . . . . . . . . 12  |-  ( 1  e.  RR  ->  (
1  /  2 )  e.  RR )
8078, 79ax-mp 8 . . . . . . . . . . 11  |-  ( 1  /  2 )  e.  RR
8180recni 8849 . . . . . . . . . 10  |-  ( 1  /  2 )  e.  CC
82 subeq0 9073 . . . . . . . . . 10  |-  ( ( ( ( T  /  _i )  /  (
2  x.  pi ) )  e.  CC  /\  ( 1  /  2
)  e.  CC )  ->  ( ( ( ( T  /  _i )  /  ( 2  x.  pi ) )  -  ( 1  /  2
) )  =  0  <-> 
( ( T  /  _i )  /  (
2  x.  pi ) )  =  ( 1  /  2 ) ) )
8377, 81, 82sylancl 643 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  ( (
( ( T  /  _i )  /  (
2  x.  pi ) )  -  ( 1  /  2 ) )  =  0  <->  ( ( T  /  _i )  / 
( 2  x.  pi ) )  =  ( 1  /  2 ) ) )
8435, 83mpbid 201 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  ( ( T  /  _i )  / 
( 2  x.  pi ) )  =  ( 1  /  2 ) )
8570adantr 451 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  ( T  /  _i )  e.  CC )
864a1i 10 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  ( 2  x.  pi )  e.  CC )
8781a1i 10 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  ( 1  /  2 )  e.  CC )
8874a1i 10 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  ( 2  x.  pi )  =/=  0 )
8985, 86, 87, 88divmuld 9558 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  ( (
( T  /  _i )  /  ( 2  x.  pi ) )  =  ( 1  /  2
)  <->  ( ( 2  x.  pi )  x.  ( 1  /  2
) )  =  ( T  /  _i ) ) )
9084, 89mpbid 201 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  ( (
2  x.  pi )  x.  ( 1  / 
2 ) )  =  ( T  /  _i ) )
918, 90syl5reqr 2330 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  ( T  /  _i )  =  pi )
9265adantr 451 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  T  e.  CC )
9366a1i 10 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  _i  e.  CC )
943a1i 10 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  pi  e.  CC )
9568a1i 10 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  _i  =/=  0 )
9692, 93, 94, 95divmuld 9558 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  ( ( T  /  _i )  =  pi  <->  ( _i  x.  pi )  =  T
) )
9791, 96mpbid 201 . . . . 5  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  ( _i  x.  pi )  =  T )
9897eqcomd 2288 . . . 4  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  T  =  ( _i  x.  pi ) )
9998olcd 382 . . 3  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  ( T  =  -u ( _i  x.  pi )  \/  T  =  ( _i  x.  pi ) ) )
1003, 66mulneg1i 9225 . . . . . . 7  |-  ( -u pi  x.  _i )  = 
-u ( pi  x.  _i )
1013, 66mulcomi 8843 . . . . . . . 8  |-  ( pi  x.  _i )  =  ( _i  x.  pi )
102101negeqi 9045 . . . . . . 7  |-  -u (
pi  x.  _i )  =  -u ( _i  x.  pi )
103100, 102eqtri 2303 . . . . . 6  |-  ( -u pi  x.  _i )  = 
-u ( _i  x.  pi )
10481, 4mulneg1i 9225 . . . . . . . . . 10  |-  ( -u ( 1  /  2
)  x.  ( 2  x.  pi ) )  =  -u ( ( 1  /  2 )  x.  ( 2  x.  pi ) )
10536, 1, 5divcan1i 9504 . . . . . . . . . . . . 13  |-  ( ( 1  /  2 )  x.  2 )  =  1
106105oveq1i 5868 . . . . . . . . . . . 12  |-  ( ( ( 1  /  2
)  x.  2 )  x.  pi )  =  ( 1  x.  pi )
10781, 1, 3mulassi 8846 . . . . . . . . . . . 12  |-  ( ( ( 1  /  2
)  x.  2 )  x.  pi )  =  ( ( 1  / 
2 )  x.  (
2  x.  pi ) )
1083mulid2i 8840 . . . . . . . . . . . 12  |-  ( 1  x.  pi )  =  pi
109106, 107, 1083eqtr3i 2311 . . . . . . . . . . 11  |-  ( ( 1  /  2 )  x.  ( 2  x.  pi ) )  =  pi
110109negeqi 9045 . . . . . . . . . 10  |-  -u (
( 1  /  2
)  x.  ( 2  x.  pi ) )  =  -u pi
111104, 110eqtri 2303 . . . . . . . . 9  |-  ( -u ( 1  /  2
)  x.  ( 2  x.  pi ) )  =  -u pi
11236, 81negsubdii 9131 . . . . . . . . . . . . 13  |-  -u (
1  -  ( 1  /  2 ) )  =  ( -u 1  +  ( 1  / 
2 ) )
113 2halves 9940 . . . . . . . . . . . . . . . 16  |-  ( 1  e.  CC  ->  (
( 1  /  2
)  +  ( 1  /  2 ) )  =  1 )
11436, 113ax-mp 8 . . . . . . . . . . . . . . 15  |-  ( ( 1  /  2 )  +  ( 1  / 
2 ) )  =  1
11536, 81, 81, 114subaddrii 9135 . . . . . . . . . . . . . 14  |-  ( 1  -  ( 1  / 
2 ) )  =  ( 1  /  2
)
116115negeqi 9045 . . . . . . . . . . . . 13  |-  -u (
1  -  ( 1  /  2 ) )  =  -u ( 1  / 
2 )
117112, 116eqtr3i 2305 . . . . . . . . . . . 12  |-  ( -u
1  +  ( 1  /  2 ) )  =  -u ( 1  / 
2 )
118 simpr 447 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  =  N )  ->  -u 1  =  N )
119118, 9syl6eq 2331 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  =  N )  ->  -u 1  =  ( ( ( T  /  _i )  / 
( 2  x.  pi ) )  -  (
1  /  2 ) ) )
120119oveq1d 5873 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  =  N )  ->  ( -u 1  +  ( 1  / 
2 ) )  =  ( ( ( ( T  /  _i )  /  ( 2  x.  pi ) )  -  ( 1  /  2
) )  +  ( 1  /  2 ) ) )
121117, 120syl5eqr 2329 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  =  N )  ->  -u ( 1  /  2 )  =  ( ( ( ( T  /  _i )  /  ( 2  x.  pi ) )  -  ( 1  /  2
) )  +  ( 1  /  2 ) ) )
122 npcan 9060 . . . . . . . . . . . . 13  |-  ( ( ( ( T  /  _i )  /  (
2  x.  pi ) )  e.  CC  /\  ( 1  /  2
)  e.  CC )  ->  ( ( ( ( T  /  _i )  /  ( 2  x.  pi ) )  -  ( 1  /  2
) )  +  ( 1  /  2 ) )  =  ( ( T  /  _i )  /  ( 2  x.  pi ) ) )
12376, 81, 122sylancl 643 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( ( T  /  _i )  / 
( 2  x.  pi ) )  -  (
1  /  2 ) )  +  ( 1  /  2 ) )  =  ( ( T  /  _i )  / 
( 2  x.  pi ) ) )
124123adantr 451 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  =  N )  ->  ( (
( ( T  /  _i )  /  (
2  x.  pi ) )  -  ( 1  /  2 ) )  +  ( 1  / 
2 ) )  =  ( ( T  /  _i )  /  (
2  x.  pi ) ) )
125121, 124eqtrd 2315 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  =  N )  ->  -u ( 1  /  2 )  =  ( ( T  /  _i )  /  (
2  x.  pi ) ) )
126125oveq1d 5873 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  =  N )  ->  ( -u (
1  /  2 )  x.  ( 2  x.  pi ) )  =  ( ( ( T  /  _i )  / 
( 2  x.  pi ) )  x.  (
2  x.  pi ) ) )
127111, 126syl5eqr 2329 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  =  N )  ->  -u pi  =  ( ( ( T  /  _i )  / 
( 2  x.  pi ) )  x.  (
2  x.  pi ) ) )
12870, 71, 75divcan1d 9537 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( T  /  _i )  /  (
2  x.  pi ) )  x.  ( 2  x.  pi ) )  =  ( T  /  _i ) )
129128adantr 451 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  =  N )  ->  ( (
( T  /  _i )  /  ( 2  x.  pi ) )  x.  ( 2  x.  pi ) )  =  ( T  /  _i ) )
130127, 129eqtrd 2315 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  =  N )  ->  -u pi  =  ( T  /  _i ) )
131130oveq1d 5873 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  =  N )  ->  ( -u pi  x.  _i )  =  ( ( T  /  _i )  x.  _i )
)
132103, 131syl5eqr 2329 . . . . 5  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  =  N )  ->  -u ( _i  x.  pi )  =  ( ( T  /  _i )  x.  _i ) )
13365, 67, 69divcan1d 9537 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( T  /  _i )  x.  _i )  =  T )
134133adantr 451 . . . . 5  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  =  N )  ->  ( ( T  /  _i )  x.  _i )  =  T )
135132, 134eqtr2d 2316 . . . 4  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  =  N )  ->  T  =  -u ( _i  x.  pi ) )
136135orcd 381 . . 3  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  =  N )  ->  ( T  =  -u ( _i  x.  pi )  \/  T  =  ( _i  x.  pi ) ) )
137 df-2 9804 . . . . . . . 8  |-  2  =  ( 1  +  1 )
138137negeqi 9045 . . . . . . 7  |-  -u 2  =  -u ( 1  +  1 )
139 negdi2 9105 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  1  e.  CC )  -> 
-u ( 1  +  1 )  =  (
-u 1  -  1 ) )
14036, 36, 139mp2an 653 . . . . . . 7  |-  -u (
1  +  1 )  =  ( -u 1  -  1 )
141138, 140eqtri 2303 . . . . . 6  |-  -u 2  =  ( -u 1  -  1 )
14212simpld 445 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  -u 2  <  N )
143141, 142syl5eqbrr 4057 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u 1  -  1 )  <  N )
144 1z 10053 . . . . . . 7  |-  1  e.  ZZ
145 znegcl 10055 . . . . . . 7  |-  ( 1  e.  ZZ  ->  -u 1  e.  ZZ )
146144, 145ax-mp 8 . . . . . 6  |-  -u 1  e.  ZZ
147 zlem1lt 10069 . . . . . 6  |-  ( (
-u 1  e.  ZZ  /\  N  e.  ZZ )  ->  ( -u 1  <_  N  <->  ( -u 1  -  1 )  < 
N ) )
148146, 17, 147sylancr 644 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u 1  <_  N  <->  ( -u 1  -  1 )  < 
N ) )
149143, 148mpbird 223 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  -u 1  <_  N )
15078renegcli 9108 . . . . 5  |-  -u 1  e.  RR
151 leloe 8908 . . . . 5  |-  ( (
-u 1  e.  RR  /\  N  e.  RR )  ->  ( -u 1  <_  N  <->  ( -u 1  <  N  \/  -u 1  =  N ) ) )
152150, 29, 151sylancr 644 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u 1  <_  N  <->  ( -u 1  <  N  \/  -u 1  =  N ) ) )
153149, 152mpbid 201 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u 1  <  N  \/  -u 1  =  N ) )
15499, 136, 153mpjaodan 761 . 2  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( T  =  -u ( _i  x.  pi )  \/  T  =  ( _i  x.  pi ) ) )
155 ovex 5883 . . . 4  |-  ( ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) )  +  ( log `  A
) )  e.  _V
15611, 155eqeltri 2353 . . 3  |-  T  e. 
_V
157156elpr 3658 . 2  |-  ( T  e.  { -u (
_i  x.  pi ) ,  ( _i  x.  pi ) }  <->  ( T  =  -u ( _i  x.  pi )  \/  T  =  ( _i  x.  pi ) ) )
158154, 157sylibr 203 1  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  T  e.  { -u ( _i  x.  pi ) ,  ( _i  x.  pi ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   _Vcvv 2788    \ cdif 3149   {csn 3640   {cpr 3641   class class class wbr 4023   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738   _ici 8739    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    - cmin 9037   -ucneg 9038    / cdiv 9423   2c2 9795   ZZcz 10024   Imcim 11583   picpi 12348   logclog 19912
This theorem is referenced by:  ang180lem4  20110
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-ef 12349  df-sin 12351  df-cos 12352  df-pi 12354  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-limc 19216  df-dv 19217  df-log 19914
  Copyright terms: Public domain W3C validator