Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem2 Structured version   Unicode version

Theorem aomclem2 27144
Description: Lemma for dfac11 27151. Successor case 2, a choice function for subsets of  ( R1 `  dom  z ). (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypotheses
Ref Expression
aomclem2.b  |-  B  =  { <. a ,  b
>.  |  E. c  e.  ( R1 `  U. dom  z ) ( ( c  e.  b  /\  -.  c  e.  a
)  /\  A. d  e.  ( R1 `  U. dom  z ) ( d ( z `  U. dom  z ) c  -> 
( d  e.  a  <-> 
d  e.  b ) ) ) }
aomclem2.c  |-  C  =  ( a  e.  _V  |->  sup ( ( y `  a ) ,  ( R1 `  dom  z
) ,  B ) )
aomclem2.on  |-  ( ph  ->  dom  z  e.  On )
aomclem2.su  |-  ( ph  ->  dom  z  =  suc  U.
dom  z )
aomclem2.we  |-  ( ph  ->  A. a  e.  dom  z ( z `  a )  We  ( R1 `  a ) )
aomclem2.a  |-  ( ph  ->  A  e.  On )
aomclem2.za  |-  ( ph  ->  dom  z  C_  A
)
aomclem2.y  |-  ( ph  ->  A. a  e.  ~P  ( R1 `  A ) ( a  =/=  (/)  ->  (
y `  a )  e.  ( ( ~P a  i^i  Fin )  \  { (/)
} ) ) )
Assertion
Ref Expression
aomclem2  |-  ( ph  ->  A. a  e.  ~P  ( R1 `  dom  z
) ( a  =/=  (/)  ->  ( C `  a )  e.  a ) )
Distinct variable groups:    y, z,
a, b, c, d    ph, a
Allowed substitution hints:    ph( y, z, b, c, d)    A( y, z, a, b, c, d)    B( y, z, a, b, c, d)    C( y, z, a, b, c, d)

Proof of Theorem aomclem2
StepHypRef Expression
1 vex 2961 . . . . 5  |-  a  e. 
_V
2 aomclem2.y . . . . . . . . . 10  |-  ( ph  ->  A. a  e.  ~P  ( R1 `  A ) ( a  =/=  (/)  ->  (
y `  a )  e.  ( ( ~P a  i^i  Fin )  \  { (/)
} ) ) )
3 aomclem2.on . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  z  e.  On )
4 aomclem2.a . . . . . . . . . . . . . 14  |-  ( ph  ->  A  e.  On )
53, 4jca 520 . . . . . . . . . . . . 13  |-  ( ph  ->  ( dom  z  e.  On  /\  A  e.  On ) )
6 aomclem2.za . . . . . . . . . . . . 13  |-  ( ph  ->  dom  z  C_  A
)
7 r1ord3 7711 . . . . . . . . . . . . 13  |-  ( ( dom  z  e.  On  /\  A  e.  On )  ->  ( dom  z  C_  A  ->  ( R1 ` 
dom  z )  C_  ( R1 `  A ) ) )
85, 6, 7sylc 59 . . . . . . . . . . . 12  |-  ( ph  ->  ( R1 `  dom  z )  C_  ( R1 `  A ) )
9 sspwb 4416 . . . . . . . . . . . 12  |-  ( ( R1 `  dom  z
)  C_  ( R1 `  A )  <->  ~P ( R1 `  dom  z ) 
C_  ~P ( R1 `  A ) )
108, 9sylib 190 . . . . . . . . . . 11  |-  ( ph  ->  ~P ( R1 `  dom  z )  C_  ~P ( R1 `  A ) )
1110sseld 3349 . . . . . . . . . 10  |-  ( ph  ->  ( a  e.  ~P ( R1 `  dom  z
)  ->  a  e.  ~P ( R1 `  A
) ) )
12 rsp 2768 . . . . . . . . . 10  |-  ( A. a  e.  ~P  ( R1 `  A ) ( a  =/=  (/)  ->  (
y `  a )  e.  ( ( ~P a  i^i  Fin )  \  { (/)
} ) )  -> 
( a  e.  ~P ( R1 `  A )  ->  ( a  =/=  (/)  ->  ( y `  a )  e.  ( ( ~P a  i^i 
Fin )  \  { (/)
} ) ) ) )
132, 11, 12sylsyld 55 . . . . . . . . 9  |-  ( ph  ->  ( a  e.  ~P ( R1 `  dom  z
)  ->  ( a  =/=  (/)  ->  ( y `  a )  e.  ( ( ~P a  i^i 
Fin )  \  { (/)
} ) ) ) )
14133imp 1148 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  (
y `  a )  e.  ( ( ~P a  i^i  Fin )  \  { (/)
} ) )
1514eldifad 3334 . . . . . . 7  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  (
y `  a )  e.  ( ~P a  i^i 
Fin ) )
16 inss1 3563 . . . . . . . . 9  |-  ( ~P a  i^i  Fin )  C_ 
~P a
1716sseli 3346 . . . . . . . 8  |-  ( ( y `  a )  e.  ( ~P a  i^i  Fin )  ->  (
y `  a )  e.  ~P a )
1817elpwid 3810 . . . . . . 7  |-  ( ( y `  a )  e.  ( ~P a  i^i  Fin )  ->  (
y `  a )  C_  a )
1915, 18syl 16 . . . . . 6  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  (
y `  a )  C_  a )
20 aomclem2.b . . . . . . . . 9  |-  B  =  { <. a ,  b
>.  |  E. c  e.  ( R1 `  U. dom  z ) ( ( c  e.  b  /\  -.  c  e.  a
)  /\  A. d  e.  ( R1 `  U. dom  z ) ( d ( z `  U. dom  z ) c  -> 
( d  e.  a  <-> 
d  e.  b ) ) ) }
21 aomclem2.su . . . . . . . . 9  |-  ( ph  ->  dom  z  =  suc  U.
dom  z )
22 aomclem2.we . . . . . . . . 9  |-  ( ph  ->  A. a  e.  dom  z ( z `  a )  We  ( R1 `  a ) )
2320, 3, 21, 22aomclem1 27143 . . . . . . . 8  |-  ( ph  ->  B  Or  ( R1
`  dom  z )
)
24233ad2ant1 979 . . . . . . 7  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  B  Or  ( R1 `  dom  z ) )
25 inss2 3564 . . . . . . . 8  |-  ( ~P a  i^i  Fin )  C_ 
Fin
2625, 15sseldi 3348 . . . . . . 7  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  (
y `  a )  e.  Fin )
27 eldifsni 3930 . . . . . . . 8  |-  ( ( y `  a )  e.  ( ( ~P a  i^i  Fin )  \  { (/) } )  -> 
( y `  a
)  =/=  (/) )
2814, 27syl 16 . . . . . . 7  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  (
y `  a )  =/=  (/) )
29 elpwi 3809 . . . . . . . . 9  |-  ( a  e.  ~P ( R1
`  dom  z )  ->  a  C_  ( R1 ` 
dom  z ) )
30293ad2ant2 980 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  a  C_  ( R1 `  dom  z ) )
3119, 30sstrd 3360 . . . . . . 7  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  (
y `  a )  C_  ( R1 `  dom  z ) )
32 fisupcl 7475 . . . . . . 7  |-  ( ( B  Or  ( R1
`  dom  z )  /\  ( ( y `  a )  e.  Fin  /\  ( y `  a
)  =/=  (/)  /\  (
y `  a )  C_  ( R1 `  dom  z ) ) )  ->  sup ( ( y `
 a ) ,  ( R1 `  dom  z ) ,  B
)  e.  ( y `
 a ) )
3324, 26, 28, 31, 32syl13anc 1187 . . . . . 6  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  sup ( ( y `  a ) ,  ( R1 `  dom  z
) ,  B )  e.  ( y `  a ) )
3419, 33sseldd 3351 . . . . 5  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  sup ( ( y `  a ) ,  ( R1 `  dom  z
) ,  B )  e.  a )
35 aomclem2.c . . . . . 6  |-  C  =  ( a  e.  _V  |->  sup ( ( y `  a ) ,  ( R1 `  dom  z
) ,  B ) )
3635fvmpt2 5815 . . . . 5  |-  ( ( a  e.  _V  /\  sup ( ( y `  a ) ,  ( R1 `  dom  z
) ,  B )  e.  a )  -> 
( C `  a
)  =  sup (
( y `  a
) ,  ( R1
`  dom  z ) ,  B ) )
371, 34, 36sylancr 646 . . . 4  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  ( C `  a )  =  sup ( ( y `
 a ) ,  ( R1 `  dom  z ) ,  B
) )
3837, 34eqeltrd 2512 . . 3  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  ( C `  a )  e.  a )
39383exp 1153 . 2  |-  ( ph  ->  ( a  e.  ~P ( R1 `  dom  z
)  ->  ( a  =/=  (/)  ->  ( C `  a )  e.  a ) ) )
4039ralrimiv 2790 1  |-  ( ph  ->  A. a  e.  ~P  ( R1 `  dom  z
) ( a  =/=  (/)  ->  ( C `  a )  e.  a ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   E.wrex 2708   _Vcvv 2958    \ cdif 3319    i^i cin 3321    C_ wss 3322   (/)c0 3630   ~Pcpw 3801   {csn 3816   U.cuni 4017   class class class wbr 4215   {copab 4268    e. cmpt 4269    Or wor 4505    We wwe 4543   Oncon0 4584   suc csuc 4586   dom cdm 4881   ` cfv 5457   Fincfn 7112   supcsup 7448   R1cr1 7691
This theorem is referenced by:  aomclem3  27145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-2o 6728  df-er 6908  df-map 7023  df-en 7113  df-fin 7116  df-sup 7449  df-r1 7693
  Copyright terms: Public domain W3C validator