Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem2 Unicode version

Theorem aomclem2 27152
Description: Lemma for dfac11 27160. Successor case 2, a choice function for subsets of  ( R1 `  dom  z ). (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypotheses
Ref Expression
aomclem2.b  |-  B  =  { <. a ,  b
>.  |  E. c  e.  ( R1 `  U. dom  z ) ( ( c  e.  b  /\  -.  c  e.  a
)  /\  A. d  e.  ( R1 `  U. dom  z ) ( d ( z `  U. dom  z ) c  -> 
( d  e.  a  <-> 
d  e.  b ) ) ) }
aomclem2.c  |-  C  =  ( a  e.  _V  |->  sup ( ( y `  a ) ,  ( R1 `  dom  z
) ,  B ) )
aomclem2.on  |-  ( ph  ->  dom  z  e.  On )
aomclem2.su  |-  ( ph  ->  dom  z  =  suc  U.
dom  z )
aomclem2.we  |-  ( ph  ->  A. a  e.  dom  z ( z `  a )  We  ( R1 `  a ) )
aomclem2.a  |-  ( ph  ->  A  e.  On )
aomclem2.za  |-  ( ph  ->  dom  z  C_  A
)
aomclem2.y  |-  ( ph  ->  A. a  e.  ~P  ( R1 `  A ) ( a  =/=  (/)  ->  (
y `  a )  e.  ( ( ~P a  i^i  Fin )  \  { (/)
} ) ) )
Assertion
Ref Expression
aomclem2  |-  ( ph  ->  A. a  e.  ~P  ( R1 `  dom  z
) ( a  =/=  (/)  ->  ( C `  a )  e.  a ) )
Distinct variable groups:    y, z,
a, b, c, d    ph, a
Allowed substitution hints:    ph( y, z, b, c, d)    A( y, z, a, b, c, d)    B( y, z, a, b, c, d)    C( y, z, a, b, c, d)

Proof of Theorem aomclem2
StepHypRef Expression
1 vex 2791 . . . . 5  |-  a  e. 
_V
2 aomclem2.y . . . . . . . . . 10  |-  ( ph  ->  A. a  e.  ~P  ( R1 `  A ) ( a  =/=  (/)  ->  (
y `  a )  e.  ( ( ~P a  i^i  Fin )  \  { (/)
} ) ) )
3 aomclem2.on . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  z  e.  On )
4 aomclem2.a . . . . . . . . . . . . . 14  |-  ( ph  ->  A  e.  On )
53, 4jca 518 . . . . . . . . . . . . 13  |-  ( ph  ->  ( dom  z  e.  On  /\  A  e.  On ) )
6 aomclem2.za . . . . . . . . . . . . 13  |-  ( ph  ->  dom  z  C_  A
)
7 r1ord3 7454 . . . . . . . . . . . . 13  |-  ( ( dom  z  e.  On  /\  A  e.  On )  ->  ( dom  z  C_  A  ->  ( R1 ` 
dom  z )  C_  ( R1 `  A ) ) )
85, 6, 7sylc 56 . . . . . . . . . . . 12  |-  ( ph  ->  ( R1 `  dom  z )  C_  ( R1 `  A ) )
9 sspwb 4223 . . . . . . . . . . . 12  |-  ( ( R1 `  dom  z
)  C_  ( R1 `  A )  <->  ~P ( R1 `  dom  z ) 
C_  ~P ( R1 `  A ) )
108, 9sylib 188 . . . . . . . . . . 11  |-  ( ph  ->  ~P ( R1 `  dom  z )  C_  ~P ( R1 `  A ) )
1110sseld 3179 . . . . . . . . . 10  |-  ( ph  ->  ( a  e.  ~P ( R1 `  dom  z
)  ->  a  e.  ~P ( R1 `  A
) ) )
12 rsp 2603 . . . . . . . . . 10  |-  ( A. a  e.  ~P  ( R1 `  A ) ( a  =/=  (/)  ->  (
y `  a )  e.  ( ( ~P a  i^i  Fin )  \  { (/)
} ) )  -> 
( a  e.  ~P ( R1 `  A )  ->  ( a  =/=  (/)  ->  ( y `  a )  e.  ( ( ~P a  i^i 
Fin )  \  { (/)
} ) ) ) )
132, 11, 12sylsyld 52 . . . . . . . . 9  |-  ( ph  ->  ( a  e.  ~P ( R1 `  dom  z
)  ->  ( a  =/=  (/)  ->  ( y `  a )  e.  ( ( ~P a  i^i 
Fin )  \  { (/)
} ) ) ) )
14133imp 1145 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  (
y `  a )  e.  ( ( ~P a  i^i  Fin )  \  { (/)
} ) )
15 eldifi 3298 . . . . . . . 8  |-  ( ( y `  a )  e.  ( ( ~P a  i^i  Fin )  \  { (/) } )  -> 
( y `  a
)  e.  ( ~P a  i^i  Fin )
)
1614, 15syl 15 . . . . . . 7  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  (
y `  a )  e.  ( ~P a  i^i 
Fin ) )
17 inss1 3389 . . . . . . . . 9  |-  ( ~P a  i^i  Fin )  C_ 
~P a
1817sseli 3176 . . . . . . . 8  |-  ( ( y `  a )  e.  ( ~P a  i^i  Fin )  ->  (
y `  a )  e.  ~P a )
19 elpwi 3633 . . . . . . . 8  |-  ( ( y `  a )  e.  ~P a  -> 
( y `  a
)  C_  a )
2018, 19syl 15 . . . . . . 7  |-  ( ( y `  a )  e.  ( ~P a  i^i  Fin )  ->  (
y `  a )  C_  a )
2116, 20syl 15 . . . . . 6  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  (
y `  a )  C_  a )
22 aomclem2.b . . . . . . . . 9  |-  B  =  { <. a ,  b
>.  |  E. c  e.  ( R1 `  U. dom  z ) ( ( c  e.  b  /\  -.  c  e.  a
)  /\  A. d  e.  ( R1 `  U. dom  z ) ( d ( z `  U. dom  z ) c  -> 
( d  e.  a  <-> 
d  e.  b ) ) ) }
23 aomclem2.su . . . . . . . . 9  |-  ( ph  ->  dom  z  =  suc  U.
dom  z )
24 aomclem2.we . . . . . . . . 9  |-  ( ph  ->  A. a  e.  dom  z ( z `  a )  We  ( R1 `  a ) )
2522, 3, 23, 24aomclem1 27151 . . . . . . . 8  |-  ( ph  ->  B  Or  ( R1
`  dom  z )
)
26253ad2ant1 976 . . . . . . 7  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  B  Or  ( R1 `  dom  z ) )
27 inss2 3390 . . . . . . . 8  |-  ( ~P a  i^i  Fin )  C_ 
Fin
2827, 16sseldi 3178 . . . . . . 7  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  (
y `  a )  e.  Fin )
29 eldifsni 3750 . . . . . . . 8  |-  ( ( y `  a )  e.  ( ( ~P a  i^i  Fin )  \  { (/) } )  -> 
( y `  a
)  =/=  (/) )
3014, 29syl 15 . . . . . . 7  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  (
y `  a )  =/=  (/) )
31 elpwi 3633 . . . . . . . . 9  |-  ( a  e.  ~P ( R1
`  dom  z )  ->  a  C_  ( R1 ` 
dom  z ) )
32313ad2ant2 977 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  a  C_  ( R1 `  dom  z ) )
3321, 32sstrd 3189 . . . . . . 7  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  (
y `  a )  C_  ( R1 `  dom  z ) )
34 fisupcl 7218 . . . . . . 7  |-  ( ( B  Or  ( R1
`  dom  z )  /\  ( ( y `  a )  e.  Fin  /\  ( y `  a
)  =/=  (/)  /\  (
y `  a )  C_  ( R1 `  dom  z ) ) )  ->  sup ( ( y `
 a ) ,  ( R1 `  dom  z ) ,  B
)  e.  ( y `
 a ) )
3526, 28, 30, 33, 34syl13anc 1184 . . . . . 6  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  sup ( ( y `  a ) ,  ( R1 `  dom  z
) ,  B )  e.  ( y `  a ) )
3621, 35sseldd 3181 . . . . 5  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  sup ( ( y `  a ) ,  ( R1 `  dom  z
) ,  B )  e.  a )
37 aomclem2.c . . . . . 6  |-  C  =  ( a  e.  _V  |->  sup ( ( y `  a ) ,  ( R1 `  dom  z
) ,  B ) )
3837fvmpt2 5608 . . . . 5  |-  ( ( a  e.  _V  /\  sup ( ( y `  a ) ,  ( R1 `  dom  z
) ,  B )  e.  a )  -> 
( C `  a
)  =  sup (
( y `  a
) ,  ( R1
`  dom  z ) ,  B ) )
391, 36, 38sylancr 644 . . . 4  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  ( C `  a )  =  sup ( ( y `
 a ) ,  ( R1 `  dom  z ) ,  B
) )
4039, 36eqeltrd 2357 . . 3  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  ( C `  a )  e.  a )
41403exp 1150 . 2  |-  ( ph  ->  ( a  e.  ~P ( R1 `  dom  z
)  ->  ( a  =/=  (/)  ->  ( C `  a )  e.  a ) ) )
4241ralrimiv 2625 1  |-  ( ph  ->  A. a  e.  ~P  ( R1 `  dom  z
) ( a  =/=  (/)  ->  ( C `  a )  e.  a ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   _Vcvv 2788    \ cdif 3149    i^i cin 3151    C_ wss 3152   (/)c0 3455   ~Pcpw 3625   {csn 3640   U.cuni 3827   class class class wbr 4023   {copab 4076    e. cmpt 4077    Or wor 4313    We wwe 4351   Oncon0 4392   suc csuc 4394   dom cdm 4689   ` cfv 5255   Fincfn 6863   supcsup 7193   R1cr1 7434
This theorem is referenced by:  aomclem3  27153
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-er 6660  df-map 6774  df-en 6864  df-fin 6867  df-sup 7194  df-r1 7436
  Copyright terms: Public domain W3C validator