Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem4 Unicode version

Theorem aomclem4 26824
Description: Lemma for dfac11 26830. Limit case. Patch together well-orderings constructed so far using fnwe2 26820 to cover the limit rank. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
aomclem4.f  |-  F  =  { <. a ,  b
>.  |  ( ( rank `  a )  _E  ( rank `  b
)  \/  ( (
rank `  a )  =  ( rank `  b
)  /\  a (
z `  suc  ( rank `  a ) ) b ) ) }
aomclem4.on  |-  ( ph  ->  dom  z  e.  On )
aomclem4.su  |-  ( ph  ->  dom  z  =  U. dom  z )
aomclem4.we  |-  ( ph  ->  A. a  e.  dom  z ( z `  a )  We  ( R1 `  a ) )
Assertion
Ref Expression
aomclem4  |-  ( ph  ->  F  We  ( R1
`  dom  z )
)
Distinct variable groups:    z, a,
b    ph, a, b
Allowed substitution hints:    ph( z)    F( z, a, b)

Proof of Theorem aomclem4
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 suceq 4588 . . 3  |-  ( c  =  ( rank `  a
)  ->  suc  c  =  suc  ( rank `  a
) )
21fveq2d 5673 . 2  |-  ( c  =  ( rank `  a
)  ->  ( z `  suc  c )  =  ( z `  suc  ( rank `  a )
) )
3 aomclem4.f . 2  |-  F  =  { <. a ,  b
>.  |  ( ( rank `  a )  _E  ( rank `  b
)  \/  ( (
rank `  a )  =  ( rank `  b
)  /\  a (
z `  suc  ( rank `  a ) ) b ) ) }
4 r1fnon 7627 . . . . . . . . . . . . . 14  |-  R1  Fn  On
5 fnfun 5483 . . . . . . . . . . . . . 14  |-  ( R1  Fn  On  ->  Fun  R1 )
64, 5ax-mp 8 . . . . . . . . . . . . 13  |-  Fun  R1
7 fndm 5485 . . . . . . . . . . . . . . 15  |-  ( R1  Fn  On  ->  dom  R1  =  On )
84, 7ax-mp 8 . . . . . . . . . . . . . 14  |-  dom  R1  =  On
98eqimss2i 3347 . . . . . . . . . . . . 13  |-  On  C_  dom  R1
106, 9pm3.2i 442 . . . . . . . . . . . 12  |-  ( Fun 
R1  /\  On  C_  dom  R1 )
11 aomclem4.on . . . . . . . . . . . 12  |-  ( ph  ->  dom  z  e.  On )
12 funfvima2 5914 . . . . . . . . . . . 12  |-  ( ( Fun  R1  /\  On  C_ 
dom  R1 )  ->  ( dom  z  e.  On  ->  ( R1 `  dom  z )  e.  ( R1 " On ) ) )
1310, 11, 12mpsyl 61 . . . . . . . . . . 11  |-  ( ph  ->  ( R1 `  dom  z )  e.  ( R1 " On ) )
14 elssuni 3986 . . . . . . . . . . 11  |-  ( ( R1 `  dom  z
)  e.  ( R1
" On )  -> 
( R1 `  dom  z )  C_  U. ( R1 " On ) )
1513, 14syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( R1 `  dom  z )  C_  U. ( R1 " On ) )
1615sselda 3292 . . . . . . . . 9  |-  ( (
ph  /\  b  e.  ( R1 `  dom  z
) )  ->  b  e.  U. ( R1 " On ) )
17 rankidb 7660 . . . . . . . . 9  |-  ( b  e.  U. ( R1
" On )  -> 
b  e.  ( R1
`  suc  ( rank `  b ) ) )
1816, 17syl 16 . . . . . . . 8  |-  ( (
ph  /\  b  e.  ( R1 `  dom  z
) )  ->  b  e.  ( R1 `  suc  ( rank `  b )
) )
19 suceq 4588 . . . . . . . . . 10  |-  ( (
rank `  b )  =  ( rank `  a
)  ->  suc  ( rank `  b )  =  suc  ( rank `  a )
)
2019fveq2d 5673 . . . . . . . . 9  |-  ( (
rank `  b )  =  ( rank `  a
)  ->  ( R1 ` 
suc  ( rank `  b
) )  =  ( R1 `  suc  ( rank `  a ) ) )
2120eleq2d 2455 . . . . . . . 8  |-  ( (
rank `  b )  =  ( rank `  a
)  ->  ( b  e.  ( R1 `  suc  ( rank `  b )
)  <->  b  e.  ( R1 `  suc  ( rank `  a ) ) ) )
2218, 21syl5ibcom 212 . . . . . . 7  |-  ( (
ph  /\  b  e.  ( R1 `  dom  z
) )  ->  (
( rank `  b )  =  ( rank `  a
)  ->  b  e.  ( R1 `  suc  ( rank `  a ) ) ) )
2322expimpd 587 . . . . . 6  |-  ( ph  ->  ( ( b  e.  ( R1 `  dom  z )  /\  ( rank `  b )  =  ( rank `  a
) )  ->  b  e.  ( R1 `  suc  ( rank `  a )
) ) )
2423ss2abdv 3360 . . . . 5  |-  ( ph  ->  { b  |  ( b  e.  ( R1
`  dom  z )  /\  ( rank `  b
)  =  ( rank `  a ) ) } 
C_  { b  |  b  e.  ( R1
`  suc  ( rank `  a ) ) } )
25 df-rab 2659 . . . . 5  |-  { b  e.  ( R1 `  dom  z )  |  (
rank `  b )  =  ( rank `  a
) }  =  {
b  |  ( b  e.  ( R1 `  dom  z )  /\  ( rank `  b )  =  ( rank `  a
) ) }
26 abid2 2505 . . . . . 6  |-  { b  |  b  e.  ( R1 `  suc  ( rank `  a ) ) }  =  ( R1
`  suc  ( rank `  a ) )
2726eqcomi 2392 . . . . 5  |-  ( R1
`  suc  ( rank `  a ) )  =  { b  |  b  e.  ( R1 `  suc  ( rank `  a
) ) }
2824, 25, 273sstr4g 3333 . . . 4  |-  ( ph  ->  { b  e.  ( R1 `  dom  z
)  |  ( rank `  b )  =  (
rank `  a ) }  C_  ( R1 `  suc  ( rank `  a
) ) )
2928adantr 452 . . 3  |-  ( (
ph  /\  a  e.  ( R1 `  dom  z
) )  ->  { b  e.  ( R1 `  dom  z )  |  (
rank `  b )  =  ( rank `  a
) }  C_  ( R1 `  suc  ( rank `  a ) ) )
30 rankr1ai 7658 . . . . . 6  |-  ( a  e.  ( R1 `  dom  z )  ->  ( rank `  a )  e. 
dom  z )
3130adantl 453 . . . . 5  |-  ( (
ph  /\  a  e.  ( R1 `  dom  z
) )  ->  ( rank `  a )  e. 
dom  z )
32 eloni 4533 . . . . . . . 8  |-  ( dom  z  e.  On  ->  Ord 
dom  z )
3311, 32syl 16 . . . . . . 7  |-  ( ph  ->  Ord  dom  z )
34 aomclem4.su . . . . . . 7  |-  ( ph  ->  dom  z  =  U. dom  z )
35 limsuc2 26807 . . . . . . 7  |-  ( ( Ord  dom  z  /\  dom  z  =  U. dom  z )  ->  (
( rank `  a )  e.  dom  z  <->  suc  ( rank `  a )  e.  dom  z ) )
3633, 34, 35syl2anc 643 . . . . . 6  |-  ( ph  ->  ( ( rank `  a
)  e.  dom  z  <->  suc  ( rank `  a
)  e.  dom  z
) )
3736adantr 452 . . . . 5  |-  ( (
ph  /\  a  e.  ( R1 `  dom  z
) )  ->  (
( rank `  a )  e.  dom  z  <->  suc  ( rank `  a )  e.  dom  z ) )
3831, 37mpbid 202 . . . 4  |-  ( (
ph  /\  a  e.  ( R1 `  dom  z
) )  ->  suc  ( rank `  a )  e.  dom  z )
39 aomclem4.we . . . . . 6  |-  ( ph  ->  A. a  e.  dom  z ( z `  a )  We  ( R1 `  a ) )
40 fveq2 5669 . . . . . . . 8  |-  ( a  =  b  ->  (
z `  a )  =  ( z `  b ) )
41 fveq2 5669 . . . . . . . 8  |-  ( a  =  b  ->  ( R1 `  a )  =  ( R1 `  b
) )
4240, 41weeq12d 26806 . . . . . . 7  |-  ( a  =  b  ->  (
( z `  a
)  We  ( R1
`  a )  <->  ( z `  b )  We  ( R1 `  b ) ) )
4342cbvralv 2876 . . . . . 6  |-  ( A. a  e.  dom  z ( z `  a )  We  ( R1 `  a )  <->  A. b  e.  dom  z ( z `
 b )  We  ( R1 `  b
) )
4439, 43sylib 189 . . . . 5  |-  ( ph  ->  A. b  e.  dom  z ( z `  b )  We  ( R1 `  b ) )
4544adantr 452 . . . 4  |-  ( (
ph  /\  a  e.  ( R1 `  dom  z
) )  ->  A. b  e.  dom  z ( z `
 b )  We  ( R1 `  b
) )
46 fveq2 5669 . . . . . 6  |-  ( b  =  suc  ( rank `  a )  ->  (
z `  b )  =  ( z `  suc  ( rank `  a
) ) )
47 fveq2 5669 . . . . . 6  |-  ( b  =  suc  ( rank `  a )  ->  ( R1 `  b )  =  ( R1 `  suc  ( rank `  a )
) )
4846, 47weeq12d 26806 . . . . 5  |-  ( b  =  suc  ( rank `  a )  ->  (
( z `  b
)  We  ( R1
`  b )  <->  ( z `  suc  ( rank `  a
) )  We  ( R1 `  suc  ( rank `  a ) ) ) )
4948rspcva 2994 . . . 4  |-  ( ( suc  ( rank `  a
)  e.  dom  z  /\  A. b  e.  dom  z ( z `  b )  We  ( R1 `  b ) )  ->  ( z `  suc  ( rank `  a
) )  We  ( R1 `  suc  ( rank `  a ) ) )
5038, 45, 49syl2anc 643 . . 3  |-  ( (
ph  /\  a  e.  ( R1 `  dom  z
) )  ->  (
z `  suc  ( rank `  a ) )  We  ( R1 `  suc  ( rank `  a )
) )
51 wess 4511 . . 3  |-  ( { b  e.  ( R1
`  dom  z )  |  ( rank `  b
)  =  ( rank `  a ) }  C_  ( R1 `  suc  ( rank `  a ) )  ->  ( ( z `
 suc  ( rank `  a ) )  We  ( R1 `  suc  ( rank `  a )
)  ->  ( z `  suc  ( rank `  a
) )  We  {
b  e.  ( R1
`  dom  z )  |  ( rank `  b
)  =  ( rank `  a ) } ) )
5229, 50, 51sylc 58 . 2  |-  ( (
ph  /\  a  e.  ( R1 `  dom  z
) )  ->  (
z `  suc  ( rank `  a ) )  We 
{ b  e.  ( R1 `  dom  z
)  |  ( rank `  b )  =  (
rank `  a ) } )
53 rankf 7654 . . . 4  |-  rank : U. ( R1 " On ) --> On
5453a1i 11 . . 3  |-  ( ph  ->  rank : U. ( R1 " On ) --> On )
55 fssres 5551 . . 3  |-  ( (
rank : U. ( R1
" On ) --> On 
/\  ( R1 `  dom  z )  C_  U. ( R1 " On ) )  ->  ( rank  |`  ( R1 `  dom  z ) ) : ( R1
`  dom  z ) --> On )
5654, 15, 55syl2anc 643 . 2  |-  ( ph  ->  ( rank  |`  ( R1
`  dom  z )
) : ( R1
`  dom  z ) --> On )
57 epweon 4705 . . 3  |-  _E  We  On
5857a1i 11 . 2  |-  ( ph  ->  _E  We  On )
592, 3, 52, 56, 58fnwe2 26820 1  |-  ( ph  ->  F  We  ( R1
`  dom  z )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1717   {cab 2374   A.wral 2650   {crab 2654    C_ wss 3264   U.cuni 3958   class class class wbr 4154   {copab 4207    _E cep 4434    We wwe 4482   Ord word 4522   Oncon0 4523   suc csuc 4525   dom cdm 4819    |` cres 4821   "cima 4822   Fun wfun 5389    Fn wfn 5390   -->wf 5391   ` cfv 5395   R1cr1 7622   rankcrnk 7623
This theorem is referenced by:  aomclem5  26825
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-recs 6570  df-rdg 6605  df-r1 7624  df-rank 7625
  Copyright terms: Public domain W3C validator