Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem4 Unicode version

Theorem aomclem4 27154
Description: Lemma for dfac11 27160. Limit case. Patch together well-orderings constructed so far using fnwe2 27150 to cover the limit rank. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
aomclem4.f  |-  F  =  { <. a ,  b
>.  |  ( ( rank `  a )  _E  ( rank `  b
)  \/  ( (
rank `  a )  =  ( rank `  b
)  /\  a (
z `  suc  ( rank `  a ) ) b ) ) }
aomclem4.on  |-  ( ph  ->  dom  z  e.  On )
aomclem4.su  |-  ( ph  ->  dom  z  =  U. dom  z )
aomclem4.we  |-  ( ph  ->  A. a  e.  dom  z ( z `  a )  We  ( R1 `  a ) )
Assertion
Ref Expression
aomclem4  |-  ( ph  ->  F  We  ( R1
`  dom  z )
)
Distinct variable groups:    z, a,
b    ph, a, b
Allowed substitution hints:    ph( z)    F( z, a, b)

Proof of Theorem aomclem4
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 suceq 4457 . . 3  |-  ( c  =  ( rank `  a
)  ->  suc  c  =  suc  ( rank `  a
) )
21fveq2d 5529 . 2  |-  ( c  =  ( rank `  a
)  ->  ( z `  suc  c )  =  ( z `  suc  ( rank `  a )
) )
3 aomclem4.f . 2  |-  F  =  { <. a ,  b
>.  |  ( ( rank `  a )  _E  ( rank `  b
)  \/  ( (
rank `  a )  =  ( rank `  b
)  /\  a (
z `  suc  ( rank `  a ) ) b ) ) }
4 r1fnon 7439 . . . . . . . . . . . . . 14  |-  R1  Fn  On
5 fnfun 5341 . . . . . . . . . . . . . 14  |-  ( R1  Fn  On  ->  Fun  R1 )
64, 5ax-mp 8 . . . . . . . . . . . . 13  |-  Fun  R1
7 fndm 5343 . . . . . . . . . . . . . . 15  |-  ( R1  Fn  On  ->  dom  R1  =  On )
84, 7ax-mp 8 . . . . . . . . . . . . . 14  |-  dom  R1  =  On
98eqimss2i 3233 . . . . . . . . . . . . 13  |-  On  C_  dom  R1
106, 9pm3.2i 441 . . . . . . . . . . . 12  |-  ( Fun 
R1  /\  On  C_  dom  R1 )
11 aomclem4.on . . . . . . . . . . . 12  |-  ( ph  ->  dom  z  e.  On )
12 funfvima2 5754 . . . . . . . . . . . 12  |-  ( ( Fun  R1  /\  On  C_ 
dom  R1 )  ->  ( dom  z  e.  On  ->  ( R1 `  dom  z )  e.  ( R1 " On ) ) )
1310, 11, 12mpsyl 59 . . . . . . . . . . 11  |-  ( ph  ->  ( R1 `  dom  z )  e.  ( R1 " On ) )
14 elssuni 3855 . . . . . . . . . . 11  |-  ( ( R1 `  dom  z
)  e.  ( R1
" On )  -> 
( R1 `  dom  z )  C_  U. ( R1 " On ) )
1513, 14syl 15 . . . . . . . . . 10  |-  ( ph  ->  ( R1 `  dom  z )  C_  U. ( R1 " On ) )
1615sselda 3180 . . . . . . . . 9  |-  ( (
ph  /\  b  e.  ( R1 `  dom  z
) )  ->  b  e.  U. ( R1 " On ) )
17 rankidb 7472 . . . . . . . . 9  |-  ( b  e.  U. ( R1
" On )  -> 
b  e.  ( R1
`  suc  ( rank `  b ) ) )
1816, 17syl 15 . . . . . . . 8  |-  ( (
ph  /\  b  e.  ( R1 `  dom  z
) )  ->  b  e.  ( R1 `  suc  ( rank `  b )
) )
19 suceq 4457 . . . . . . . . . 10  |-  ( (
rank `  b )  =  ( rank `  a
)  ->  suc  ( rank `  b )  =  suc  ( rank `  a )
)
2019fveq2d 5529 . . . . . . . . 9  |-  ( (
rank `  b )  =  ( rank `  a
)  ->  ( R1 ` 
suc  ( rank `  b
) )  =  ( R1 `  suc  ( rank `  a ) ) )
2120eleq2d 2350 . . . . . . . 8  |-  ( (
rank `  b )  =  ( rank `  a
)  ->  ( b  e.  ( R1 `  suc  ( rank `  b )
)  <->  b  e.  ( R1 `  suc  ( rank `  a ) ) ) )
2218, 21syl5ibcom 211 . . . . . . 7  |-  ( (
ph  /\  b  e.  ( R1 `  dom  z
) )  ->  (
( rank `  b )  =  ( rank `  a
)  ->  b  e.  ( R1 `  suc  ( rank `  a ) ) ) )
2322expimpd 586 . . . . . 6  |-  ( ph  ->  ( ( b  e.  ( R1 `  dom  z )  /\  ( rank `  b )  =  ( rank `  a
) )  ->  b  e.  ( R1 `  suc  ( rank `  a )
) ) )
2423ss2abdv 3246 . . . . 5  |-  ( ph  ->  { b  |  ( b  e.  ( R1
`  dom  z )  /\  ( rank `  b
)  =  ( rank `  a ) ) } 
C_  { b  |  b  e.  ( R1
`  suc  ( rank `  a ) ) } )
25 df-rab 2552 . . . . 5  |-  { b  e.  ( R1 `  dom  z )  |  (
rank `  b )  =  ( rank `  a
) }  =  {
b  |  ( b  e.  ( R1 `  dom  z )  /\  ( rank `  b )  =  ( rank `  a
) ) }
26 abid2 2400 . . . . . 6  |-  { b  |  b  e.  ( R1 `  suc  ( rank `  a ) ) }  =  ( R1
`  suc  ( rank `  a ) )
2726eqcomi 2287 . . . . 5  |-  ( R1
`  suc  ( rank `  a ) )  =  { b  |  b  e.  ( R1 `  suc  ( rank `  a
) ) }
2824, 25, 273sstr4g 3219 . . . 4  |-  ( ph  ->  { b  e.  ( R1 `  dom  z
)  |  ( rank `  b )  =  (
rank `  a ) }  C_  ( R1 `  suc  ( rank `  a
) ) )
2928adantr 451 . . 3  |-  ( (
ph  /\  a  e.  ( R1 `  dom  z
) )  ->  { b  e.  ( R1 `  dom  z )  |  (
rank `  b )  =  ( rank `  a
) }  C_  ( R1 `  suc  ( rank `  a ) ) )
30 rankr1ai 7470 . . . . . 6  |-  ( a  e.  ( R1 `  dom  z )  ->  ( rank `  a )  e. 
dom  z )
3130adantl 452 . . . . 5  |-  ( (
ph  /\  a  e.  ( R1 `  dom  z
) )  ->  ( rank `  a )  e. 
dom  z )
32 eloni 4402 . . . . . . . 8  |-  ( dom  z  e.  On  ->  Ord 
dom  z )
3311, 32syl 15 . . . . . . 7  |-  ( ph  ->  Ord  dom  z )
34 aomclem4.su . . . . . . 7  |-  ( ph  ->  dom  z  =  U. dom  z )
35 limsuc2 27137 . . . . . . 7  |-  ( ( Ord  dom  z  /\  dom  z  =  U. dom  z )  ->  (
( rank `  a )  e.  dom  z  <->  suc  ( rank `  a )  e.  dom  z ) )
3633, 34, 35syl2anc 642 . . . . . 6  |-  ( ph  ->  ( ( rank `  a
)  e.  dom  z  <->  suc  ( rank `  a
)  e.  dom  z
) )
3736adantr 451 . . . . 5  |-  ( (
ph  /\  a  e.  ( R1 `  dom  z
) )  ->  (
( rank `  a )  e.  dom  z  <->  suc  ( rank `  a )  e.  dom  z ) )
3831, 37mpbid 201 . . . 4  |-  ( (
ph  /\  a  e.  ( R1 `  dom  z
) )  ->  suc  ( rank `  a )  e.  dom  z )
39 aomclem4.we . . . . . 6  |-  ( ph  ->  A. a  e.  dom  z ( z `  a )  We  ( R1 `  a ) )
40 fveq2 5525 . . . . . . . 8  |-  ( a  =  b  ->  (
z `  a )  =  ( z `  b ) )
41 fveq2 5525 . . . . . . . 8  |-  ( a  =  b  ->  ( R1 `  a )  =  ( R1 `  b
) )
4240, 41weeq12d 27136 . . . . . . 7  |-  ( a  =  b  ->  (
( z `  a
)  We  ( R1
`  a )  <->  ( z `  b )  We  ( R1 `  b ) ) )
4342cbvralv 2764 . . . . . 6  |-  ( A. a  e.  dom  z ( z `  a )  We  ( R1 `  a )  <->  A. b  e.  dom  z ( z `
 b )  We  ( R1 `  b
) )
4439, 43sylib 188 . . . . 5  |-  ( ph  ->  A. b  e.  dom  z ( z `  b )  We  ( R1 `  b ) )
4544adantr 451 . . . 4  |-  ( (
ph  /\  a  e.  ( R1 `  dom  z
) )  ->  A. b  e.  dom  z ( z `
 b )  We  ( R1 `  b
) )
46 fveq2 5525 . . . . . 6  |-  ( b  =  suc  ( rank `  a )  ->  (
z `  b )  =  ( z `  suc  ( rank `  a
) ) )
47 fveq2 5525 . . . . . 6  |-  ( b  =  suc  ( rank `  a )  ->  ( R1 `  b )  =  ( R1 `  suc  ( rank `  a )
) )
4846, 47weeq12d 27136 . . . . 5  |-  ( b  =  suc  ( rank `  a )  ->  (
( z `  b
)  We  ( R1
`  b )  <->  ( z `  suc  ( rank `  a
) )  We  ( R1 `  suc  ( rank `  a ) ) ) )
4948rspcva 2882 . . . 4  |-  ( ( suc  ( rank `  a
)  e.  dom  z  /\  A. b  e.  dom  z ( z `  b )  We  ( R1 `  b ) )  ->  ( z `  suc  ( rank `  a
) )  We  ( R1 `  suc  ( rank `  a ) ) )
5038, 45, 49syl2anc 642 . . 3  |-  ( (
ph  /\  a  e.  ( R1 `  dom  z
) )  ->  (
z `  suc  ( rank `  a ) )  We  ( R1 `  suc  ( rank `  a )
) )
51 wess 4380 . . 3  |-  ( { b  e.  ( R1
`  dom  z )  |  ( rank `  b
)  =  ( rank `  a ) }  C_  ( R1 `  suc  ( rank `  a ) )  ->  ( ( z `
 suc  ( rank `  a ) )  We  ( R1 `  suc  ( rank `  a )
)  ->  ( z `  suc  ( rank `  a
) )  We  {
b  e.  ( R1
`  dom  z )  |  ( rank `  b
)  =  ( rank `  a ) } ) )
5229, 50, 51sylc 56 . 2  |-  ( (
ph  /\  a  e.  ( R1 `  dom  z
) )  ->  (
z `  suc  ( rank `  a ) )  We 
{ b  e.  ( R1 `  dom  z
)  |  ( rank `  b )  =  (
rank `  a ) } )
53 rankf 7466 . . . 4  |-  rank : U. ( R1 " On ) --> On
5453a1i 10 . . 3  |-  ( ph  ->  rank : U. ( R1 " On ) --> On )
55 fssres 5408 . . 3  |-  ( (
rank : U. ( R1
" On ) --> On 
/\  ( R1 `  dom  z )  C_  U. ( R1 " On ) )  ->  ( rank  |`  ( R1 `  dom  z ) ) : ( R1
`  dom  z ) --> On )
5654, 15, 55syl2anc 642 . 2  |-  ( ph  ->  ( rank  |`  ( R1
`  dom  z )
) : ( R1
`  dom  z ) --> On )
57 epweon 4575 . . 3  |-  _E  We  On
5857a1i 10 . 2  |-  ( ph  ->  _E  We  On )
592, 3, 52, 56, 58fnwe2 27150 1  |-  ( ph  ->  F  We  ( R1
`  dom  z )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684   {cab 2269   A.wral 2543   {crab 2547    C_ wss 3152   U.cuni 3827   class class class wbr 4023   {copab 4076    _E cep 4303    We wwe 4351   Ord word 4391   Oncon0 4392   suc csuc 4394   dom cdm 4689    |` cres 4691   "cima 4692   Fun wfun 5249    Fn wfn 5250   -->wf 5251   ` cfv 5255   R1cr1 7434   rankcrnk 7435
This theorem is referenced by:  aomclem5  27155
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-recs 6388  df-rdg 6423  df-r1 7436  df-rank 7437
  Copyright terms: Public domain W3C validator