Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem6 Unicode version

Theorem aomclem6 27259
Description: Lemma for dfac11 27263. Transfinite induction, close over  z. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
aomclem6.b  |-  B  =  { <. a ,  b
>.  |  E. c  e.  ( R1 `  U. dom  z ) ( ( c  e.  b  /\  -.  c  e.  a
)  /\  A. d  e.  ( R1 `  U. dom  z ) ( d ( z `  U. dom  z ) c  -> 
( d  e.  a  <-> 
d  e.  b ) ) ) }
aomclem6.c  |-  C  =  ( a  e.  _V  |->  sup ( ( y `  a ) ,  ( R1 `  dom  z
) ,  B ) )
aomclem6.d  |-  D  = recs ( ( a  e. 
_V  |->  ( C `  ( ( R1 `  dom  z )  \  ran  a ) ) ) )
aomclem6.e  |-  E  =  { <. a ,  b
>.  |  |^| ( `' D " { a } )  e.  |^| ( `' D " { b } ) }
aomclem6.f  |-  F  =  { <. a ,  b
>.  |  ( ( rank `  a )  _E  ( rank `  b
)  \/  ( (
rank `  a )  =  ( rank `  b
)  /\  a (
z `  suc  ( rank `  a ) ) b ) ) }
aomclem6.g  |-  G  =  ( if ( dom  z  =  U. dom  z ,  F ,  E )  i^i  (
( R1 `  dom  z )  X.  ( R1 `  dom  z ) ) )
aomclem6.h  |-  H  = recs ( ( z  e. 
_V  |->  G ) )
aomclem6.a  |-  ( ph  ->  A  e.  On )
aomclem6.y  |-  ( ph  ->  A. a  e.  ~P  ( R1 `  A ) ( a  =/=  (/)  ->  (
y `  a )  e.  ( ( ~P a  i^i  Fin )  \  { (/)
} ) ) )
Assertion
Ref Expression
aomclem6  |-  ( ph  ->  ( H `  A
)  We  ( R1
`  A ) )
Distinct variable groups:    y, z,
a, b, c, d    ph, a, b, c, d, z    C, a, b, c, d    D, a, b, c, d    A, a, b, c, d, z    H, a, b, c, d, z    G, d
Allowed substitution hints:    ph( y)    A( y)    B( y, z, a, b, c, d)    C( y, z)    D( y, z)    E( y, z, a, b, c, d)    F( y, z, a, b, c, d)    G( y, z, a, b, c)    H( y)

Proof of Theorem aomclem6
StepHypRef Expression
1 ssid 3210 . 2  |-  A  C_  A
2 aomclem6.a . . . 4  |-  ( ph  ->  A  e.  On )
32adantr 451 . . 3  |-  ( (
ph  /\  A  C_  A
)  ->  A  e.  On )
4 sseq1 3212 . . . . . 6  |-  ( c  =  d  ->  (
c  C_  A  <->  d  C_  A ) )
54anbi2d 684 . . . . 5  |-  ( c  =  d  ->  (
( ph  /\  c  C_  A )  <->  ( ph  /\  d  C_  A )
) )
6 fveq2 5541 . . . . . 6  |-  ( c  =  d  ->  ( H `  c )  =  ( H `  d ) )
7 fveq2 5541 . . . . . 6  |-  ( c  =  d  ->  ( R1 `  c )  =  ( R1 `  d
) )
86, 7weeq12d 27239 . . . . 5  |-  ( c  =  d  ->  (
( H `  c
)  We  ( R1
`  c )  <->  ( H `  d )  We  ( R1 `  d ) ) )
95, 8imbi12d 311 . . . 4  |-  ( c  =  d  ->  (
( ( ph  /\  c  C_  A )  -> 
( H `  c
)  We  ( R1
`  c ) )  <-> 
( ( ph  /\  d  C_  A )  -> 
( H `  d
)  We  ( R1
`  d ) ) ) )
10 sseq1 3212 . . . . . 6  |-  ( c  =  A  ->  (
c  C_  A  <->  A  C_  A
) )
1110anbi2d 684 . . . . 5  |-  ( c  =  A  ->  (
( ph  /\  c  C_  A )  <->  ( ph  /\  A  C_  A )
) )
12 fveq2 5541 . . . . . 6  |-  ( c  =  A  ->  ( H `  c )  =  ( H `  A ) )
13 fveq2 5541 . . . . . 6  |-  ( c  =  A  ->  ( R1 `  c )  =  ( R1 `  A
) )
1412, 13weeq12d 27239 . . . . 5  |-  ( c  =  A  ->  (
( H `  c
)  We  ( R1
`  c )  <->  ( H `  A )  We  ( R1 `  A ) ) )
1511, 14imbi12d 311 . . . 4  |-  ( c  =  A  ->  (
( ( ph  /\  c  C_  A )  -> 
( H `  c
)  We  ( R1
`  c ) )  <-> 
( ( ph  /\  A  C_  A )  -> 
( H `  A
)  We  ( R1
`  A ) ) ) )
16 aomclem6.b . . . . . . . . . . . . . 14  |-  B  =  { <. a ,  b
>.  |  E. c  e.  ( R1 `  U. dom  z ) ( ( c  e.  b  /\  -.  c  e.  a
)  /\  A. d  e.  ( R1 `  U. dom  z ) ( d ( z `  U. dom  z ) c  -> 
( d  e.  a  <-> 
d  e.  b ) ) ) }
17 aomclem6.c . . . . . . . . . . . . . 14  |-  C  =  ( a  e.  _V  |->  sup ( ( y `  a ) ,  ( R1 `  dom  z
) ,  B ) )
18 aomclem6.d . . . . . . . . . . . . . 14  |-  D  = recs ( ( a  e. 
_V  |->  ( C `  ( ( R1 `  dom  z )  \  ran  a ) ) ) )
19 aomclem6.e . . . . . . . . . . . . . 14  |-  E  =  { <. a ,  b
>.  |  |^| ( `' D " { a } )  e.  |^| ( `' D " { b } ) }
20 aomclem6.f . . . . . . . . . . . . . 14  |-  F  =  { <. a ,  b
>.  |  ( ( rank `  a )  _E  ( rank `  b
)  \/  ( (
rank `  a )  =  ( rank `  b
)  /\  a (
z `  suc  ( rank `  a ) ) b ) ) }
21 aomclem6.g . . . . . . . . . . . . . 14  |-  G  =  ( if ( dom  z  =  U. dom  z ,  F ,  E )  i^i  (
( R1 `  dom  z )  X.  ( R1 `  dom  z ) ) )
22 dmeq 4895 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( H  |`  c )  ->  dom  z  =  dom  ( H  |`  c ) )
2322adantl 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( c  e.  On  /\ 
A. d  e.  c  ( ( ph  /\  d  C_  A )  -> 
( H `  d
)  We  ( R1
`  d ) )  /\  ( ph  /\  c  C_  A ) )  /\  z  =  ( H  |`  c )
)  ->  dom  z  =  dom  ( H  |`  c ) )
24 simpl1 958 . . . . . . . . . . . . . . . . 17  |-  ( ( ( c  e.  On  /\ 
A. d  e.  c  ( ( ph  /\  d  C_  A )  -> 
( H `  d
)  We  ( R1
`  d ) )  /\  ( ph  /\  c  C_  A ) )  /\  z  =  ( H  |`  c )
)  ->  c  e.  On )
25 onss 4598 . . . . . . . . . . . . . . . . . 18  |-  ( c  e.  On  ->  c  C_  On )
26 aomclem6.h . . . . . . . . . . . . . . . . . . . 20  |-  H  = recs ( ( z  e. 
_V  |->  G ) )
2726tfr1 6429 . . . . . . . . . . . . . . . . . . 19  |-  H  Fn  On
28 fnssres 5373 . . . . . . . . . . . . . . . . . . 19  |-  ( ( H  Fn  On  /\  c  C_  On )  -> 
( H  |`  c
)  Fn  c )
2927, 28mpan 651 . . . . . . . . . . . . . . . . . 18  |-  ( c 
C_  On  ->  ( H  |`  c )  Fn  c
)
30 fndm 5359 . . . . . . . . . . . . . . . . . 18  |-  ( ( H  |`  c )  Fn  c  ->  dom  ( H  |`  c )  =  c )
3125, 29, 303syl 18 . . . . . . . . . . . . . . . . 17  |-  ( c  e.  On  ->  dom  ( H  |`  c )  =  c )
3224, 31syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( c  e.  On  /\ 
A. d  e.  c  ( ( ph  /\  d  C_  A )  -> 
( H `  d
)  We  ( R1
`  d ) )  /\  ( ph  /\  c  C_  A ) )  /\  z  =  ( H  |`  c )
)  ->  dom  ( H  |`  c )  =  c )
3323, 32eqtrd 2328 . . . . . . . . . . . . . . 15  |-  ( ( ( c  e.  On  /\ 
A. d  e.  c  ( ( ph  /\  d  C_  A )  -> 
( H `  d
)  We  ( R1
`  d ) )  /\  ( ph  /\  c  C_  A ) )  /\  z  =  ( H  |`  c )
)  ->  dom  z  =  c )
3433, 24eqeltrd 2370 . . . . . . . . . . . . . 14  |-  ( ( ( c  e.  On  /\ 
A. d  e.  c  ( ( ph  /\  d  C_  A )  -> 
( H `  d
)  We  ( R1
`  d ) )  /\  ( ph  /\  c  C_  A ) )  /\  z  =  ( H  |`  c )
)  ->  dom  z  e.  On )
3533eleq2d 2363 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( c  e.  On  /\ 
A. d  e.  c  ( ( ph  /\  d  C_  A )  -> 
( H `  d
)  We  ( R1
`  d ) )  /\  ( ph  /\  c  C_  A ) )  /\  z  =  ( H  |`  c )
)  ->  ( a  e.  dom  z  <->  a  e.  c ) )
3635biimpa 470 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( c  e.  On  /\  A. d  e.  c  ( ( ph  /\  d  C_  A
)  ->  ( H `  d )  We  ( R1 `  d ) )  /\  ( ph  /\  c  C_  A ) )  /\  z  =  ( H  |`  c )
)  /\  a  e.  dom  z )  ->  a  e.  c )
37 simpll2 995 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( c  e.  On  /\  A. d  e.  c  ( ( ph  /\  d  C_  A
)  ->  ( H `  d )  We  ( R1 `  d ) )  /\  ( ph  /\  c  C_  A ) )  /\  z  =  ( H  |`  c )
)  /\  a  e.  dom  z )  ->  A. d  e.  c  ( ( ph  /\  d  C_  A
)  ->  ( H `  d )  We  ( R1 `  d ) ) )
38 simpl3l 1010 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( c  e.  On  /\ 
A. d  e.  c  ( ( ph  /\  d  C_  A )  -> 
( H `  d
)  We  ( R1
`  d ) )  /\  ( ph  /\  c  C_  A ) )  /\  z  =  ( H  |`  c )
)  ->  ph )
3938adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( c  e.  On  /\  A. d  e.  c  ( ( ph  /\  d  C_  A
)  ->  ( H `  d )  We  ( R1 `  d ) )  /\  ( ph  /\  c  C_  A ) )  /\  z  =  ( H  |`  c )
)  /\  a  e.  dom  z )  ->  ph )
40 onelss 4450 . . . . . . . . . . . . . . . . . . . 20  |-  ( dom  z  e.  On  ->  ( a  e.  dom  z  ->  a  C_  dom  z ) )
4134, 40syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( c  e.  On  /\ 
A. d  e.  c  ( ( ph  /\  d  C_  A )  -> 
( H `  d
)  We  ( R1
`  d ) )  /\  ( ph  /\  c  C_  A ) )  /\  z  =  ( H  |`  c )
)  ->  ( a  e.  dom  z  ->  a  C_ 
dom  z ) )
4241imp 418 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( c  e.  On  /\  A. d  e.  c  ( ( ph  /\  d  C_  A
)  ->  ( H `  d )  We  ( R1 `  d ) )  /\  ( ph  /\  c  C_  A ) )  /\  z  =  ( H  |`  c )
)  /\  a  e.  dom  z )  ->  a  C_ 
dom  z )
43 simpl3r 1011 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( c  e.  On  /\ 
A. d  e.  c  ( ( ph  /\  d  C_  A )  -> 
( H `  d
)  We  ( R1
`  d ) )  /\  ( ph  /\  c  C_  A ) )  /\  z  =  ( H  |`  c )
)  ->  c  C_  A )
4433, 43eqsstrd 3225 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( c  e.  On  /\ 
A. d  e.  c  ( ( ph  /\  d  C_  A )  -> 
( H `  d
)  We  ( R1
`  d ) )  /\  ( ph  /\  c  C_  A ) )  /\  z  =  ( H  |`  c )
)  ->  dom  z  C_  A )
4544adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( c  e.  On  /\  A. d  e.  c  ( ( ph  /\  d  C_  A
)  ->  ( H `  d )  We  ( R1 `  d ) )  /\  ( ph  /\  c  C_  A ) )  /\  z  =  ( H  |`  c )
)  /\  a  e.  dom  z )  ->  dom  z  C_  A )
4642, 45sstrd 3202 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( c  e.  On  /\  A. d  e.  c  ( ( ph  /\  d  C_  A
)  ->  ( H `  d )  We  ( R1 `  d ) )  /\  ( ph  /\  c  C_  A ) )  /\  z  =  ( H  |`  c )
)  /\  a  e.  dom  z )  ->  a  C_  A )
47 sseq1 3212 . . . . . . . . . . . . . . . . . . . . 21  |-  ( d  =  a  ->  (
d  C_  A  <->  a  C_  A ) )
4847anbi2d 684 . . . . . . . . . . . . . . . . . . . 20  |-  ( d  =  a  ->  (
( ph  /\  d  C_  A )  <->  ( ph  /\  a  C_  A )
) )
49 fveq2 5541 . . . . . . . . . . . . . . . . . . . . 21  |-  ( d  =  a  ->  ( H `  d )  =  ( H `  a ) )
50 fveq2 5541 . . . . . . . . . . . . . . . . . . . . 21  |-  ( d  =  a  ->  ( R1 `  d )  =  ( R1 `  a
) )
5149, 50weeq12d 27239 . . . . . . . . . . . . . . . . . . . 20  |-  ( d  =  a  ->  (
( H `  d
)  We  ( R1
`  d )  <->  ( H `  a )  We  ( R1 `  a ) ) )
5248, 51imbi12d 311 . . . . . . . . . . . . . . . . . . 19  |-  ( d  =  a  ->  (
( ( ph  /\  d  C_  A )  -> 
( H `  d
)  We  ( R1
`  d ) )  <-> 
( ( ph  /\  a  C_  A )  -> 
( H `  a
)  We  ( R1
`  a ) ) ) )
5352rspcva 2895 . . . . . . . . . . . . . . . . . 18  |-  ( ( a  e.  c  /\  A. d  e.  c  ( ( ph  /\  d  C_  A )  ->  ( H `  d )  We  ( R1 `  d
) ) )  -> 
( ( ph  /\  a  C_  A )  -> 
( H `  a
)  We  ( R1
`  a ) ) )
5453imp 418 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  e.  c  /\  A. d  e.  c  ( ( ph  /\  d  C_  A )  ->  ( H `  d
)  We  ( R1
`  d ) ) )  /\  ( ph  /\  a  C_  A )
)  ->  ( H `  a )  We  ( R1 `  a ) )
5536, 37, 39, 46, 54syl22anc 1183 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( c  e.  On  /\  A. d  e.  c  ( ( ph  /\  d  C_  A
)  ->  ( H `  d )  We  ( R1 `  d ) )  /\  ( ph  /\  c  C_  A ) )  /\  z  =  ( H  |`  c )
)  /\  a  e.  dom  z )  ->  ( H `  a )  We  ( R1 `  a
) )
56 fveq1 5540 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( H  |`  c )  ->  (
z `  a )  =  ( ( H  |`  c ) `  a
) )
5756ad2antlr 707 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( c  e.  On  /\  A. d  e.  c  ( ( ph  /\  d  C_  A
)  ->  ( H `  d )  We  ( R1 `  d ) )  /\  ( ph  /\  c  C_  A ) )  /\  z  =  ( H  |`  c )
)  /\  a  e.  dom  z )  ->  (
z `  a )  =  ( ( H  |`  c ) `  a
) )
58 fvres 5558 . . . . . . . . . . . . . . . . . . 19  |-  ( a  e.  c  ->  (
( H  |`  c
) `  a )  =  ( H `  a ) )
5936, 58syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( c  e.  On  /\  A. d  e.  c  ( ( ph  /\  d  C_  A
)  ->  ( H `  d )  We  ( R1 `  d ) )  /\  ( ph  /\  c  C_  A ) )  /\  z  =  ( H  |`  c )
)  /\  a  e.  dom  z )  ->  (
( H  |`  c
) `  a )  =  ( H `  a ) )
6057, 59eqtrd 2328 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( c  e.  On  /\  A. d  e.  c  ( ( ph  /\  d  C_  A
)  ->  ( H `  d )  We  ( R1 `  d ) )  /\  ( ph  /\  c  C_  A ) )  /\  z  =  ( H  |`  c )
)  /\  a  e.  dom  z )  ->  (
z `  a )  =  ( H `  a ) )
61 weeq1 4397 . . . . . . . . . . . . . . . . 17  |-  ( ( z `  a )  =  ( H `  a )  ->  (
( z `  a
)  We  ( R1
`  a )  <->  ( H `  a )  We  ( R1 `  a ) ) )
6260, 61syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( c  e.  On  /\  A. d  e.  c  ( ( ph  /\  d  C_  A
)  ->  ( H `  d )  We  ( R1 `  d ) )  /\  ( ph  /\  c  C_  A ) )  /\  z  =  ( H  |`  c )
)  /\  a  e.  dom  z )  ->  (
( z `  a
)  We  ( R1
`  a )  <->  ( H `  a )  We  ( R1 `  a ) ) )
6355, 62mpbird 223 . . . . . . . . . . . . . . 15  |-  ( ( ( ( c  e.  On  /\  A. d  e.  c  ( ( ph  /\  d  C_  A
)  ->  ( H `  d )  We  ( R1 `  d ) )  /\  ( ph  /\  c  C_  A ) )  /\  z  =  ( H  |`  c )
)  /\  a  e.  dom  z )  ->  (
z `  a )  We  ( R1 `  a
) )
6463ralrimiva 2639 . . . . . . . . . . . . . 14  |-  ( ( ( c  e.  On  /\ 
A. d  e.  c  ( ( ph  /\  d  C_  A )  -> 
( H `  d
)  We  ( R1
`  d ) )  /\  ( ph  /\  c  C_  A ) )  /\  z  =  ( H  |`  c )
)  ->  A. a  e.  dom  z ( z `
 a )  We  ( R1 `  a
) )
6538, 2syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( c  e.  On  /\ 
A. d  e.  c  ( ( ph  /\  d  C_  A )  -> 
( H `  d
)  We  ( R1
`  d ) )  /\  ( ph  /\  c  C_  A ) )  /\  z  =  ( H  |`  c )
)  ->  A  e.  On )
66 aomclem6.y . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. a  e.  ~P  ( R1 `  A ) ( a  =/=  (/)  ->  (
y `  a )  e.  ( ( ~P a  i^i  Fin )  \  { (/)
} ) ) )
6738, 66syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( c  e.  On  /\ 
A. d  e.  c  ( ( ph  /\  d  C_  A )  -> 
( H `  d
)  We  ( R1
`  d ) )  /\  ( ph  /\  c  C_  A ) )  /\  z  =  ( H  |`  c )
)  ->  A. a  e.  ~P  ( R1 `  A ) ( a  =/=  (/)  ->  ( y `  a )  e.  ( ( ~P a  i^i 
Fin )  \  { (/)
} ) ) )
6816, 17, 18, 19, 20, 21, 34, 64, 65, 44, 67aomclem5 27258 . . . . . . . . . . . . 13  |-  ( ( ( c  e.  On  /\ 
A. d  e.  c  ( ( ph  /\  d  C_  A )  -> 
( H `  d
)  We  ( R1
`  d ) )  /\  ( ph  /\  c  C_  A ) )  /\  z  =  ( H  |`  c )
)  ->  G  We  ( R1 `  dom  z
) )
6933fveq2d 5545 . . . . . . . . . . . . . 14  |-  ( ( ( c  e.  On  /\ 
A. d  e.  c  ( ( ph  /\  d  C_  A )  -> 
( H `  d
)  We  ( R1
`  d ) )  /\  ( ph  /\  c  C_  A ) )  /\  z  =  ( H  |`  c )
)  ->  ( R1 ` 
dom  z )  =  ( R1 `  c
) )
70 weeq2 4398 . . . . . . . . . . . . . 14  |-  ( ( R1 `  dom  z
)  =  ( R1
`  c )  -> 
( G  We  ( R1 `  dom  z )  <-> 
G  We  ( R1
`  c ) ) )
7169, 70syl 15 . . . . . . . . . . . . 13  |-  ( ( ( c  e.  On  /\ 
A. d  e.  c  ( ( ph  /\  d  C_  A )  -> 
( H `  d
)  We  ( R1
`  d ) )  /\  ( ph  /\  c  C_  A ) )  /\  z  =  ( H  |`  c )
)  ->  ( G  We  ( R1 `  dom  z )  <->  G  We  ( R1 `  c ) ) )
7268, 71mpbid 201 . . . . . . . . . . . 12  |-  ( ( ( c  e.  On  /\ 
A. d  e.  c  ( ( ph  /\  d  C_  A )  -> 
( H `  d
)  We  ( R1
`  d ) )  /\  ( ph  /\  c  C_  A ) )  /\  z  =  ( H  |`  c )
)  ->  G  We  ( R1 `  c ) )
7372ex 423 . . . . . . . . . . 11  |-  ( ( c  e.  On  /\  A. d  e.  c  ( ( ph  /\  d  C_  A )  ->  ( H `  d )  We  ( R1 `  d
) )  /\  ( ph  /\  c  C_  A
) )  ->  (
z  =  ( H  |`  c )  ->  G  We  ( R1 `  c
) ) )
7473alrimiv 1621 . . . . . . . . . 10  |-  ( ( c  e.  On  /\  A. d  e.  c  ( ( ph  /\  d  C_  A )  ->  ( H `  d )  We  ( R1 `  d
) )  /\  ( ph  /\  c  C_  A
) )  ->  A. z
( z  =  ( H  |`  c )  ->  G  We  ( R1
`  c ) ) )
75 nfv 1609 . . . . . . . . . . 11  |-  F/ d ( z  =  ( H  |`  c )  ->  G  We  ( R1
`  c ) )
76 nfv 1609 . . . . . . . . . . . 12  |-  F/ z  d  =  ( H  |`  c )
77 nfsbc1v 3023 . . . . . . . . . . . 12  |-  F/ z
[. d  /  z ]. G  We  ( R1 `  c )
7876, 77nfim 1781 . . . . . . . . . . 11  |-  F/ z ( d  =  ( H  |`  c )  ->  [. d  /  z ]. G  We  ( R1 `  c ) )
79 eqeq1 2302 . . . . . . . . . . . 12  |-  ( z  =  d  ->  (
z  =  ( H  |`  c )  <->  d  =  ( H  |`  c ) ) )
80 sbceq1a 3014 . . . . . . . . . . . 12  |-  ( z  =  d  ->  ( G  We  ( R1 `  c )  <->  [. d  / 
z ]. G  We  ( R1 `  c ) ) )
8179, 80imbi12d 311 . . . . . . . . . . 11  |-  ( z  =  d  ->  (
( z  =  ( H  |`  c )  ->  G  We  ( R1
`  c ) )  <-> 
( d  =  ( H  |`  c )  ->  [. d  /  z ]. G  We  ( R1 `  c ) ) ) )
8275, 78, 81cbval 1937 . . . . . . . . . 10  |-  ( A. z ( z  =  ( H  |`  c
)  ->  G  We  ( R1 `  c ) )  <->  A. d ( d  =  ( H  |`  c )  ->  [. d  /  z ]. G  We  ( R1 `  c
) ) )
8374, 82sylib 188 . . . . . . . . 9  |-  ( ( c  e.  On  /\  A. d  e.  c  ( ( ph  /\  d  C_  A )  ->  ( H `  d )  We  ( R1 `  d
) )  /\  ( ph  /\  c  C_  A
) )  ->  A. d
( d  =  ( H  |`  c )  ->  [. d  /  z ]. G  We  ( R1 `  c ) ) )
84 nfsbc1v 3023 . . . . . . . . . 10  |-  F/ d
[. ( H  |`  c )  /  d ]. [. d  /  z ]. G  We  ( R1 `  c )
85 fnfun 5357 . . . . . . . . . . . 12  |-  ( H  Fn  On  ->  Fun  H )
8627, 85ax-mp 8 . . . . . . . . . . 11  |-  Fun  H
87 vex 2804 . . . . . . . . . . 11  |-  c  e. 
_V
88 resfunexg 5753 . . . . . . . . . . 11  |-  ( ( Fun  H  /\  c  e.  _V )  ->  ( H  |`  c )  e. 
_V )
8986, 87, 88mp2an 653 . . . . . . . . . 10  |-  ( H  |`  c )  e.  _V
90 sbceq1a 3014 . . . . . . . . . 10  |-  ( d  =  ( H  |`  c )  ->  ( [. d  /  z ]. G  We  ( R1 `  c )  <->  [. ( H  |`  c )  /  d ]. [. d  /  z ]. G  We  ( R1 `  c ) ) )
9184, 89, 90ceqsal 2826 . . . . . . . . 9  |-  ( A. d ( d  =  ( H  |`  c
)  ->  [. d  / 
z ]. G  We  ( R1 `  c ) )  <->  [. ( H  |`  c
)  /  d ]. [. d  /  z ]. G  We  ( R1 `  c ) )
9283, 91sylib 188 . . . . . . . 8  |-  ( ( c  e.  On  /\  A. d  e.  c  ( ( ph  /\  d  C_  A )  ->  ( H `  d )  We  ( R1 `  d
) )  /\  ( ph  /\  c  C_  A
) )  ->  [. ( H  |`  c )  / 
d ]. [. d  / 
z ]. G  We  ( R1 `  c ) )
93 sbcco 3026 . . . . . . . 8  |-  ( [. ( H  |`  c )  /  d ]. [. d  /  z ]. G  We  ( R1 `  c
)  <->  [. ( H  |`  c )  /  z ]. G  We  ( R1 `  c ) )
9492, 93sylib 188 . . . . . . 7  |-  ( ( c  e.  On  /\  A. d  e.  c  ( ( ph  /\  d  C_  A )  ->  ( H `  d )  We  ( R1 `  d
) )  /\  ( ph  /\  c  C_  A
) )  ->  [. ( H  |`  c )  / 
z ]. G  We  ( R1 `  c ) )
95 nfcsb1v 3126 . . . . . . . . . 10  |-  F/_ z [_ ( H  |`  c
)  /  z ]_ G
96 nfcv 2432 . . . . . . . . . 10  |-  F/_ z
( R1 `  c
)
9795, 96nfwe 4385 . . . . . . . . 9  |-  F/ z
[_ ( H  |`  c )  /  z ]_ G  We  ( R1 `  c )
98 csbeq1a 3102 . . . . . . . . . 10  |-  ( z  =  ( H  |`  c )  ->  G  =  [_ ( H  |`  c )  /  z ]_ G )
99 weeq1 4397 . . . . . . . . . 10  |-  ( G  =  [_ ( H  |`  c )  /  z ]_ G  ->  ( G  We  ( R1 `  c )  <->  [_ ( H  |`  c )  /  z ]_ G  We  ( R1 `  c ) ) )
10098, 99syl 15 . . . . . . . . 9  |-  ( z  =  ( H  |`  c )  ->  ( G  We  ( R1 `  c )  <->  [_ ( H  |`  c )  /  z ]_ G  We  ( R1 `  c ) ) )
10197, 100sbciegf 3035 . . . . . . . 8  |-  ( ( H  |`  c )  e.  _V  ->  ( [. ( H  |`  c )  /  z ]. G  We  ( R1 `  c
)  <->  [_ ( H  |`  c )  /  z ]_ G  We  ( R1 `  c ) ) )
10289, 101ax-mp 8 . . . . . . 7  |-  ( [. ( H  |`  c )  /  z ]. G  We  ( R1 `  c
)  <->  [_ ( H  |`  c )  /  z ]_ G  We  ( R1 `  c ) )
10394, 102sylib 188 . . . . . 6  |-  ( ( c  e.  On  /\  A. d  e.  c  ( ( ph  /\  d  C_  A )  ->  ( H `  d )  We  ( R1 `  d
) )  /\  ( ph  /\  c  C_  A
) )  ->  [_ ( H  |`  c )  / 
z ]_ G  We  ( R1 `  c ) )
104 recsval 6433 . . . . . . . . 9  |-  ( c  e.  On  ->  (recs ( ( z  e. 
_V  |->  G ) ) `
 c )  =  ( ( z  e. 
_V  |->  G ) `  (recs ( ( z  e. 
_V  |->  G ) )  |`  c ) ) )
10526fveq1i 5542 . . . . . . . . 9  |-  ( H `
 c )  =  (recs ( ( z  e.  _V  |->  G ) ) `  c )
106 fvex 5555 . . . . . . . . . . . . . . 15  |-  ( R1
`  dom  z )  e.  _V
107106, 106xpex 4817 . . . . . . . . . . . . . 14  |-  ( ( R1 `  dom  z
)  X.  ( R1
`  dom  z )
)  e.  _V
108107inex2 4172 . . . . . . . . . . . . 13  |-  ( if ( dom  z  = 
U. dom  z ,  F ,  E )  i^i  ( ( R1 `  dom  z )  X.  ( R1 `  dom  z ) ) )  e.  _V
10921, 108eqeltri 2366 . . . . . . . . . . . 12  |-  G  e. 
_V
11089, 109csbex 3105 . . . . . . . . . . 11  |-  [_ ( H  |`  c )  / 
z ]_ G  e.  _V
111 eqid 2296 . . . . . . . . . . . 12  |-  ( z  e.  _V  |->  G )  =  ( z  e. 
_V  |->  G )
112111fvmpts 5619 . . . . . . . . . . 11  |-  ( ( ( H  |`  c
)  e.  _V  /\  [_ ( H  |`  c
)  /  z ]_ G  e.  _V )  ->  ( ( z  e. 
_V  |->  G ) `  ( H  |`  c ) )  =  [_ ( H  |`  c )  / 
z ]_ G )
11389, 110, 112mp2an 653 . . . . . . . . . 10  |-  ( ( z  e.  _V  |->  G ) `  ( H  |`  c ) )  = 
[_ ( H  |`  c )  /  z ]_ G
11426reseq1i 4967 . . . . . . . . . . 11  |-  ( H  |`  c )  =  (recs ( ( z  e. 
_V  |->  G ) )  |`  c )
115114fveq2i 5544 . . . . . . . . . 10  |-  ( ( z  e.  _V  |->  G ) `  ( H  |`  c ) )  =  ( ( z  e. 
_V  |->  G ) `  (recs ( ( z  e. 
_V  |->  G ) )  |`  c ) )
116113, 115eqtr3i 2318 . . . . . . . . 9  |-  [_ ( H  |`  c )  / 
z ]_ G  =  ( ( z  e.  _V  |->  G ) `  (recs ( ( z  e. 
_V  |->  G ) )  |`  c ) )
117104, 105, 1163eqtr4g 2353 . . . . . . . 8  |-  ( c  e.  On  ->  ( H `  c )  =  [_ ( H  |`  c )  /  z ]_ G )
118 weeq1 4397 . . . . . . . 8  |-  ( ( H `  c )  =  [_ ( H  |`  c )  /  z ]_ G  ->  ( ( H `  c )  We  ( R1 `  c )  <->  [_ ( H  |`  c )  /  z ]_ G  We  ( R1 `  c ) ) )
119117, 118syl 15 . . . . . . 7  |-  ( c  e.  On  ->  (
( H `  c
)  We  ( R1
`  c )  <->  [_ ( H  |`  c )  /  z ]_ G  We  ( R1 `  c ) ) )
1201193ad2ant1 976 . . . . . 6  |-  ( ( c  e.  On  /\  A. d  e.  c  ( ( ph  /\  d  C_  A )  ->  ( H `  d )  We  ( R1 `  d
) )  /\  ( ph  /\  c  C_  A
) )  ->  (
( H `  c
)  We  ( R1
`  c )  <->  [_ ( H  |`  c )  /  z ]_ G  We  ( R1 `  c ) ) )
121103, 120mpbird 223 . . . . 5  |-  ( ( c  e.  On  /\  A. d  e.  c  ( ( ph  /\  d  C_  A )  ->  ( H `  d )  We  ( R1 `  d
) )  /\  ( ph  /\  c  C_  A
) )  ->  ( H `  c )  We  ( R1 `  c
) )
1221213exp 1150 . . . 4  |-  ( c  e.  On  ->  ( A. d  e.  c 
( ( ph  /\  d  C_  A )  -> 
( H `  d
)  We  ( R1
`  d ) )  ->  ( ( ph  /\  c  C_  A )  ->  ( H `  c
)  We  ( R1
`  c ) ) ) )
1239, 15, 122tfis3 4664 . . 3  |-  ( A  e.  On  ->  (
( ph  /\  A  C_  A )  ->  ( H `  A )  We  ( R1 `  A
) ) )
1243, 123mpcom 32 . 2  |-  ( (
ph  /\  A  C_  A
)  ->  ( H `  A )  We  ( R1 `  A ) )
1251, 124mpan2 652 1  |-  ( ph  ->  ( H `  A
)  We  ( R1
`  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934   A.wal 1530    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   _Vcvv 2801   [.wsbc 3004   [_csb 3094    \ cdif 3162    i^i cin 3164    C_ wss 3165   (/)c0 3468   ifcif 3578   ~Pcpw 3638   {csn 3653   U.cuni 3843   |^|cint 3878   class class class wbr 4039   {copab 4092    e. cmpt 4093    _E cep 4319    We wwe 4367   Oncon0 4408   suc csuc 4410    X. cxp 4703   `'ccnv 4704   dom cdm 4705   ran crn 4706    |` cres 4707   "cima 4708   Fun wfun 5265    Fn wfn 5266   ` cfv 5271  recscrecs 6403   Fincfn 6879   supcsup 7209   R1cr1 7450   rankcrnk 7451
This theorem is referenced by:  aomclem7  27260
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-er 6676  df-map 6790  df-en 6880  df-fin 6883  df-sup 7210  df-r1 7452  df-rank 7453
  Copyright terms: Public domain W3C validator