Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  areacirclem4 Unicode version

Theorem areacirclem4 25030
Description: Endpoint-inclusive continuity of Cartesian ordinate of circle. (Contributed by Brendan Leahy, 29-Aug-2017.)
Assertion
Ref Expression
areacirclem4  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( t  e.  (
-u R [,] R
)  |->  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
Distinct variable group:    t, R

Proof of Theorem areacirclem4
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 resqcl 11187 . . . . . . . 8  |-  ( R  e.  RR  ->  ( R ^ 2 )  e.  RR )
21adantr 451 . . . . . . 7  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( R ^ 2 )  e.  RR )
32adantr 451 . . . . . 6  |-  ( ( ( R  e.  RR  /\  0  <_  R )  /\  t  e.  ( -u R [,] R ) )  ->  ( R ^ 2 )  e.  RR )
4 renegcl 9126 . . . . . . . . . 10  |-  ( R  e.  RR  ->  -u R  e.  RR )
5 iccssre 10747 . . . . . . . . . 10  |-  ( (
-u R  e.  RR  /\  R  e.  RR )  ->  ( -u R [,] R )  C_  RR )
64, 5mpancom 650 . . . . . . . . 9  |-  ( R  e.  RR  ->  ( -u R [,] R ) 
C_  RR )
76sselda 3193 . . . . . . . 8  |-  ( ( R  e.  RR  /\  t  e.  ( -u R [,] R ) )  -> 
t  e.  RR )
87resqcld 11287 . . . . . . 7  |-  ( ( R  e.  RR  /\  t  e.  ( -u R [,] R ) )  -> 
( t ^ 2 )  e.  RR )
98adantlr 695 . . . . . 6  |-  ( ( ( R  e.  RR  /\  0  <_  R )  /\  t  e.  ( -u R [,] R ) )  ->  ( t ^ 2 )  e.  RR )
103, 9resubcld 9227 . . . . 5  |-  ( ( ( R  e.  RR  /\  0  <_  R )  /\  t  e.  ( -u R [,] R ) )  ->  ( ( R ^ 2 )  -  ( t ^ 2 ) )  e.  RR )
11 elicc2 10731 . . . . . . . . 9  |-  ( (
-u R  e.  RR  /\  R  e.  RR )  ->  ( t  e.  ( -u R [,] R )  <->  ( t  e.  RR  /\  -u R  <_  t  /\  t  <_  R ) ) )
124, 11mpancom 650 . . . . . . . 8  |-  ( R  e.  RR  ->  (
t  e.  ( -u R [,] R )  <->  ( t  e.  RR  /\  -u R  <_  t  /\  t  <_  R ) ) )
1312adantr 451 . . . . . . 7  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( t  e.  (
-u R [,] R
)  <->  ( t  e.  RR  /\  -u R  <_  t  /\  t  <_  R ) ) )
1413ad2ant1 976 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  ( R ^ 2 )  e.  RR )
15 resqcl 11187 . . . . . . . . . . . . . . 15  |-  ( t  e.  RR  ->  (
t ^ 2 )  e.  RR )
16153ad2ant3 978 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  (
t ^ 2 )  e.  RR )
1714, 16subge0d 9378 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  (
0  <_  ( ( R ^ 2 )  -  ( t ^ 2 ) )  <->  ( t ^ 2 )  <_ 
( R ^ 2 ) ) )
18 absresq 11803 . . . . . . . . . . . . . . 15  |-  ( t  e.  RR  ->  (
( abs `  t
) ^ 2 )  =  ( t ^
2 ) )
19183ad2ant3 978 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  (
( abs `  t
) ^ 2 )  =  ( t ^
2 ) )
2019breq1d 4049 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  (
( ( abs `  t
) ^ 2 )  <_  ( R ^
2 )  <->  ( t ^ 2 )  <_ 
( R ^ 2 ) ) )
2117, 20bitr4d 247 . . . . . . . . . . . 12  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  (
0  <_  ( ( R ^ 2 )  -  ( t ^ 2 ) )  <->  ( ( abs `  t ) ^
2 )  <_  ( R ^ 2 ) ) )
22 recn 8843 . . . . . . . . . . . . . . 15  |-  ( t  e.  RR  ->  t  e.  CC )
2322abscld 11934 . . . . . . . . . . . . . 14  |-  ( t  e.  RR  ->  ( abs `  t )  e.  RR )
24233ad2ant3 978 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  ( abs `  t )  e.  RR )
25 simp1 955 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  R  e.  RR )
2622absge0d 11942 . . . . . . . . . . . . . 14  |-  ( t  e.  RR  ->  0  <_  ( abs `  t
) )
27263ad2ant3 978 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  0  <_  ( abs `  t
) )
28 simp2 956 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  0  <_  R )
2924, 25, 27, 28le2sqd 11296 . . . . . . . . . . . 12  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  (
( abs `  t
)  <_  R  <->  ( ( abs `  t ) ^
2 )  <_  ( R ^ 2 ) ) )
30 simp3 957 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  t  e.  RR )
3130, 25absled 11929 . . . . . . . . . . . 12  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  (
( abs `  t
)  <_  R  <->  ( -u R  <_  t  /\  t  <_  R ) ) )
3221, 29, 313bitr2d 272 . . . . . . . . . . 11  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  (
0  <_  ( ( R ^ 2 )  -  ( t ^ 2 ) )  <->  ( -u R  <_  t  /\  t  <_  R ) ) )
3332biimprd 214 . . . . . . . . . 10  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  (
( -u R  <_  t  /\  t  <_  R )  ->  0  <_  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) )
34333expa 1151 . . . . . . . . 9  |-  ( ( ( R  e.  RR  /\  0  <_  R )  /\  t  e.  RR )  ->  ( ( -u R  <_  t  /\  t  <_  R )  ->  0  <_  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) )
3534exp4b 590 . . . . . . . 8  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( t  e.  RR  ->  ( -u R  <_ 
t  ->  ( t  <_  R  ->  0  <_  ( ( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ) )
36353impd 1165 . . . . . . 7  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( ( t  e.  RR  /\  -u R  <_  t  /\  t  <_  R )  ->  0  <_  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) )
3713, 36sylbid 206 . . . . . 6  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( t  e.  (
-u R [,] R
)  ->  0  <_  ( ( R ^ 2 )  -  ( t ^ 2 ) ) ) )
3837imp 418 . . . . 5  |-  ( ( ( R  e.  RR  /\  0  <_  R )  /\  t  e.  ( -u R [,] R ) )  ->  0  <_  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )
39 elrege0 10762 . . . . 5  |-  ( ( ( R ^ 2 )  -  ( t ^ 2 ) )  e.  ( 0 [,) 
+oo )  <->  ( (
( R ^ 2 )  -  ( t ^ 2 ) )  e.  RR  /\  0  <_  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) )
4010, 38, 39sylanbrc 645 . . . 4  |-  ( ( ( R  e.  RR  /\  0  <_  R )  /\  t  e.  ( -u R [,] R ) )  ->  ( ( R ^ 2 )  -  ( t ^ 2 ) )  e.  ( 0 [,)  +oo )
)
41 fvres 5558 . . . 4  |-  ( ( ( R ^ 2 )  -  ( t ^ 2 ) )  e.  ( 0 [,) 
+oo )  ->  (
( sqr  |`  ( 0 [,)  +oo ) ) `  ( ( R ^
2 )  -  (
t ^ 2 ) ) )  =  ( sqr `  ( ( R ^ 2 )  -  ( t ^
2 ) ) ) )
4240, 41syl 15 . . 3  |-  ( ( ( R  e.  RR  /\  0  <_  R )  /\  t  e.  ( -u R [,] R ) )  ->  ( ( sqr  |`  ( 0 [,) 
+oo ) ) `  ( ( R ^
2 )  -  (
t ^ 2 ) ) )  =  ( sqr `  ( ( R ^ 2 )  -  ( t ^
2 ) ) ) )
4342mpteq2dva 4122 . 2  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( t  e.  (
-u R [,] R
)  |->  ( ( sqr  |`  ( 0 [,)  +oo ) ) `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) )  =  ( t  e.  ( -u R [,] R )  |->  ( sqr `  ( ( R ^ 2 )  -  ( t ^
2 ) ) ) ) )
44 eqid 2296 . . . . . . 7  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
4544cnfldtopon 18308 . . . . . 6  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
46 ax-resscn 8810 . . . . . . 7  |-  RR  C_  CC
476, 46syl6ss 3204 . . . . . 6  |-  ( R  e.  RR  ->  ( -u R [,] R ) 
C_  CC )
48 resttopon 16908 . . . . . 6  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ( -u R [,] R ) 
C_  CC )  -> 
( ( TopOpen ` fld )t  ( -u R [,] R ) )  e.  (TopOn `  ( -u R [,] R ) ) )
4945, 47, 48sylancr 644 . . . . 5  |-  ( R  e.  RR  ->  (
( TopOpen ` fld )t  ( -u R [,] R ) )  e.  (TopOn `  ( -u R [,] R ) ) )
5049adantr 451 . . . 4  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( ( TopOpen ` fld )t  ( -u R [,] R ) )  e.  (TopOn `  ( -u R [,] R ) ) )
51 resmpt 5016 . . . . . . . 8  |-  ( (
-u R [,] R
)  C_  CC  ->  ( ( t  e.  CC  |->  ( ( R ^
2 )  -  (
t ^ 2 ) ) )  |`  ( -u R [,] R ) )  =  ( t  e.  ( -u R [,] R )  |->  ( ( R ^ 2 )  -  ( t ^
2 ) ) ) )
5247, 51syl 15 . . . . . . 7  |-  ( R  e.  RR  ->  (
( t  e.  CC  |->  ( ( R ^
2 )  -  (
t ^ 2 ) ) )  |`  ( -u R [,] R ) )  =  ( t  e.  ( -u R [,] R )  |->  ( ( R ^ 2 )  -  ( t ^
2 ) ) ) )
5345a1i 10 . . . . . . . . 9  |-  ( R  e.  RR  ->  ( TopOpen
` fld
)  e.  (TopOn `  CC ) )
54 recn 8843 . . . . . . . . . . 11  |-  ( R  e.  RR  ->  R  e.  CC )
5554sqcld 11259 . . . . . . . . . 10  |-  ( R  e.  RR  ->  ( R ^ 2 )  e.  CC )
5653, 53, 55cnmptc 17372 . . . . . . . . 9  |-  ( R  e.  RR  ->  (
t  e.  CC  |->  ( R ^ 2 ) )  e.  ( (
TopOpen ` fld )  Cn  ( TopOpen ` fld )
) )
5744sqcn 18394 . . . . . . . . . 10  |-  ( t  e.  CC  |->  ( t ^ 2 ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen ` fld ) )
5857a1i 10 . . . . . . . . 9  |-  ( R  e.  RR  ->  (
t  e.  CC  |->  ( t ^ 2 ) )  e.  ( (
TopOpen ` fld )  Cn  ( TopOpen ` fld )
) )
5944subcn 18386 . . . . . . . . . 10  |-  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
6059a1i 10 . . . . . . . . 9  |-  ( R  e.  RR  ->  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) ) )
6153, 56, 58, 60cnmpt12f 17376 . . . . . . . 8  |-  ( R  e.  RR  ->  (
t  e.  CC  |->  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )  e.  ( (
TopOpen ` fld )  Cn  ( TopOpen ` fld )
) )
6245toponunii 16686 . . . . . . . . 9  |-  CC  =  U. ( TopOpen ` fld )
6362cnrest 17029 . . . . . . . 8  |-  ( ( ( t  e.  CC  |->  ( ( R ^
2 )  -  (
t ^ 2 ) ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) )  /\  ( -u R [,] R ) 
C_  CC )  -> 
( ( t  e.  CC  |->  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )  |`  ( -u R [,] R
) )  e.  ( ( ( TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( TopOpen ` fld ) ) )
6461, 47, 63syl2anc 642 . . . . . . 7  |-  ( R  e.  RR  ->  (
( t  e.  CC  |->  ( ( R ^
2 )  -  (
t ^ 2 ) ) )  |`  ( -u R [,] R ) )  e.  ( ( ( TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( TopOpen ` fld ) ) )
6552, 64eqeltrrd 2371 . . . . . 6  |-  ( R  e.  RR  ->  (
t  e.  ( -u R [,] R )  |->  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )  e.  ( ( ( TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( TopOpen ` fld ) ) )
6665adantr 451 . . . . 5  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( t  e.  (
-u R [,] R
)  |->  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )  e.  ( ( ( TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( TopOpen ` fld )
) )
6745a1i 10 . . . . . 6  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( TopOpen ` fld )  e.  (TopOn `  CC ) )
68 eqid 2296 . . . . . . . 8  |-  ( t  e.  ( -u R [,] R )  |->  ( ( R ^ 2 )  -  ( t ^
2 ) ) )  =  ( t  e.  ( -u R [,] R )  |->  ( ( R ^ 2 )  -  ( t ^
2 ) ) )
6968rnmpt 4941 . . . . . . 7  |-  ran  (
t  e.  ( -u R [,] R )  |->  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )  =  { u  |  E. t  e.  (
-u R [,] R
) u  =  ( ( R ^ 2 )  -  ( t ^ 2 ) ) }
70 simp3 957 . . . . . . . . . 10  |-  ( ( ( R  e.  RR  /\  0  <_  R )  /\  t  e.  ( -u R [,] R )  /\  u  =  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )  ->  u  =  ( ( R ^
2 )  -  (
t ^ 2 ) ) )
71403adant3 975 . . . . . . . . . 10  |-  ( ( ( R  e.  RR  /\  0  <_  R )  /\  t  e.  ( -u R [,] R )  /\  u  =  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )  ->  ( ( R ^ 2 )  -  ( t ^ 2 ) )  e.  ( 0 [,)  +oo )
)
7270, 71eqeltrd 2370 . . . . . . . . 9  |-  ( ( ( R  e.  RR  /\  0  <_  R )  /\  t  e.  ( -u R [,] R )  /\  u  =  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )  ->  u  e.  ( 0 [,)  +oo ) )
7372rexlimdv3a 2682 . . . . . . . 8  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( E. t  e.  ( -u R [,] R ) u  =  ( ( R ^
2 )  -  (
t ^ 2 ) )  ->  u  e.  ( 0 [,)  +oo ) ) )
7473abssdv 3260 . . . . . . 7  |-  ( ( R  e.  RR  /\  0  <_  R )  ->  { u  |  E. t  e.  ( -u R [,] R ) u  =  ( ( R ^
2 )  -  (
t ^ 2 ) ) }  C_  (
0 [,)  +oo ) )
7569, 74syl5eqss 3235 . . . . . 6  |-  ( ( R  e.  RR  /\  0  <_  R )  ->  ran  ( t  e.  (
-u R [,] R
)  |->  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )  C_  ( 0 [,)  +oo ) )
76 0re 8854 . . . . . . . . 9  |-  0  e.  RR
77 pnfxr 10471 . . . . . . . . 9  |-  +oo  e.  RR*
78 icossre 10746 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  +oo 
e.  RR* )  ->  (
0 [,)  +oo )  C_  RR )
7976, 77, 78mp2an 653 . . . . . . . 8  |-  ( 0 [,)  +oo )  C_  RR
8079, 46sstri 3201 . . . . . . 7  |-  ( 0 [,)  +oo )  C_  CC
8180a1i 10 . . . . . 6  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( 0 [,)  +oo )  C_  CC )
82 cnrest2 17030 . . . . . 6  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ran  ( t  e.  (
-u R [,] R
)  |->  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )  C_  ( 0 [,)  +oo )  /\  ( 0 [,) 
+oo )  C_  CC )  ->  ( ( t  e.  ( -u R [,] R )  |->  ( ( R ^ 2 )  -  ( t ^
2 ) ) )  e.  ( ( (
TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( TopOpen ` fld ) )  <->  ( t  e.  ( -u R [,] R )  |->  ( ( R ^ 2 )  -  ( t ^
2 ) ) )  e.  ( ( (
TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( ( TopOpen ` fld )t  ( 0 [,) 
+oo ) ) ) ) )
8367, 75, 81, 82syl3anc 1182 . . . . 5  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( ( t  e.  ( -u R [,] R )  |->  ( ( R ^ 2 )  -  ( t ^
2 ) ) )  e.  ( ( (
TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( TopOpen ` fld ) )  <->  ( t  e.  ( -u R [,] R )  |->  ( ( R ^ 2 )  -  ( t ^
2 ) ) )  e.  ( ( (
TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( ( TopOpen ` fld )t  ( 0 [,) 
+oo ) ) ) ) )
8466, 83mpbid 201 . . . 4  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( t  e.  (
-u R [,] R
)  |->  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )  e.  ( ( ( TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( (
TopOpen ` fld )t  ( 0 [,)  +oo ) ) ) )
85 ssid 3210 . . . . . . . 8  |-  CC  C_  CC
86 cncfss 18419 . . . . . . . 8  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  (
( 0 [,)  +oo ) -cn-> RR )  C_  (
( 0 [,)  +oo ) -cn-> CC ) )
8746, 85, 86mp2an 653 . . . . . . 7  |-  ( ( 0 [,)  +oo ) -cn->
RR )  C_  (
( 0 [,)  +oo ) -cn-> CC )
88 resqrcn 20105 . . . . . . 7  |-  ( sqr  |`  ( 0 [,)  +oo ) )  e.  ( ( 0 [,)  +oo ) -cn-> RR )
8987, 88sselii 3190 . . . . . 6  |-  ( sqr  |`  ( 0 [,)  +oo ) )  e.  ( ( 0 [,)  +oo ) -cn-> CC )
90 eqid 2296 . . . . . . . 8  |-  ( (
TopOpen ` fld )t  ( 0 [,)  +oo ) )  =  ( ( TopOpen ` fld )t  ( 0 [,) 
+oo ) )
91 eqid 2296 . . . . . . . 8  |-  ( (
TopOpen ` fld )t  CC )  =  ( ( TopOpen ` fld )t  CC )
9244, 90, 91cncfcn 18429 . . . . . . 7  |-  ( ( ( 0 [,)  +oo )  C_  CC  /\  CC  C_  CC )  ->  (
( 0 [,)  +oo ) -cn-> CC )  =  ( ( ( TopOpen ` fld )t  ( 0 [,) 
+oo ) )  Cn  ( ( TopOpen ` fld )t  CC ) ) )
9380, 85, 92mp2an 653 . . . . . 6  |-  ( ( 0 [,)  +oo ) -cn->
CC )  =  ( ( ( TopOpen ` fld )t  ( 0 [,) 
+oo ) )  Cn  ( ( TopOpen ` fld )t  CC ) )
9489, 93eleqtri 2368 . . . . 5  |-  ( sqr  |`  ( 0 [,)  +oo ) )  e.  ( ( ( TopOpen ` fld )t  ( 0 [,) 
+oo ) )  Cn  ( ( TopOpen ` fld )t  CC ) )
9594a1i 10 . . . 4  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( sqr  |`  ( 0 [,)  +oo ) )  e.  ( ( ( TopOpen ` fld )t  (
0 [,)  +oo ) )  Cn  ( ( TopOpen ` fld )t  CC ) ) )
9650, 84, 95cnmpt11f 17374 . . 3  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( t  e.  (
-u R [,] R
)  |->  ( ( sqr  |`  ( 0 [,)  +oo ) ) `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) )  e.  ( ( ( TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( ( TopOpen ` fld )t  CC ) ) )
97 eqid 2296 . . . . . 6  |-  ( (
TopOpen ` fld )t  ( -u R [,] R ) )  =  ( ( TopOpen ` fld )t  ( -u R [,] R ) )
9844, 97, 91cncfcn 18429 . . . . 5  |-  ( ( ( -u R [,] R )  C_  CC  /\  CC  C_  CC )  ->  ( ( -u R [,] R ) -cn-> CC )  =  ( ( (
TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( ( TopOpen ` fld )t  CC ) ) )
9947, 85, 98sylancl 643 . . . 4  |-  ( R  e.  RR  ->  (
( -u R [,] R
) -cn-> CC )  =  ( ( ( TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( ( TopOpen ` fld )t  CC ) ) )
10099adantr 451 . . 3  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( ( -u R [,] R ) -cn-> CC )  =  ( ( (
TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( ( TopOpen ` fld )t  CC ) ) )
10196, 100eleqtrrd 2373 . 2  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( t  e.  (
-u R [,] R
)  |->  ( ( sqr  |`  ( 0 [,)  +oo ) ) `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
10243, 101eqeltrrd 2371 1  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( t  e.  (
-u R [,] R
)  |->  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   {cab 2282   E.wrex 2557    C_ wss 3165   class class class wbr 4039    e. cmpt 4093   ran crn 4706    |` cres 4707   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753    +oocpnf 8880   RR*cxr 8882    <_ cle 8884    - cmin 9053   -ucneg 9054   2c2 9811   [,)cico 10674   [,]cicc 10675   ^cexp 11120   sqrcsqr 11734   abscabs 11735   ↾t crest 13341   TopOpenctopn 13342  ℂfldccnfld 16393  TopOnctopon 16648    Cn ccn 16970    tX ctx 17271   -cn->ccncf 18396
This theorem is referenced by:  areacirclem1  25031  areacirclem5  25032
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-shft 11578  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175  df-ef 12365  df-sin 12367  df-cos 12368  df-tan 12369  df-pi 12370  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-haus 17059  df-cmp 17130  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-limc 19232  df-dv 19233  df-log 19930  df-cxp 19931
  Copyright terms: Public domain W3C validator