MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  areage0 Unicode version

Theorem areage0 20763
Description: The area of a measurable region is greater than or equal to zero. (Contributed by Mario Carneiro, 21-Jun-2015.)
Assertion
Ref Expression
areage0  |-  ( S  e.  dom area  ->  0  <_ 
(area `  S )
)

Proof of Theorem areage0
StepHypRef Expression
1 areaf 20761 . . 3  |- area : dom area --> ( 0 [,)  +oo )
21ffvelrni 5836 . 2  |-  ( S  e.  dom area  ->  (area `  S )  e.  ( 0 [,)  +oo )
)
3 elrege0 10971 . . 3  |-  ( (area `  S )  e.  ( 0 [,)  +oo )  <->  ( (area `  S )  e.  RR  /\  0  <_ 
(area `  S )
) )
43simprbi 451 . 2  |-  ( (area `  S )  e.  ( 0 [,)  +oo )  ->  0  <_  (area `  S
) )
52, 4syl 16 1  |-  ( S  e.  dom area  ->  0  <_ 
(area `  S )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1721   class class class wbr 4180   dom cdm 4845   ` cfv 5421  (class class class)co 6048   RRcr 8953   0cc0 8954    +oocpnf 9081    <_ cle 9085   [,)cico 10882  areacarea 20755
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-inf2 7560  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031  ax-pre-sup 9032  ax-addf 9033
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-disj 4151  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-se 4510  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-of 6272  df-ofr 6273  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-1o 6691  df-2o 6692  df-oadd 6695  df-er 6872  df-map 6987  df-pm 6988  df-en 7077  df-dom 7078  df-sdom 7079  df-fin 7080  df-sup 7412  df-oi 7443  df-card 7790  df-cda 8012  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-div 9642  df-nn 9965  df-2 10022  df-3 10023  df-4 10024  df-n0 10186  df-z 10247  df-uz 10453  df-q 10539  df-rp 10577  df-xadd 10675  df-ioo 10884  df-ico 10886  df-icc 10887  df-fz 11008  df-fzo 11099  df-fl 11165  df-mod 11214  df-seq 11287  df-exp 11346  df-hash 11582  df-cj 11867  df-re 11868  df-im 11869  df-sqr 12003  df-abs 12004  df-clim 12245  df-sum 12443  df-xmet 16658  df-met 16659  df-ovol 19322  df-vol 19323  df-mbf 19473  df-itg1 19474  df-itg2 19475  df-ibl 19476  df-itg 19477  df-0p 19523  df-area 20756
  Copyright terms: Public domain W3C validator