MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  argrege0 Structured version   Unicode version

Theorem argrege0 20511
Description: Closure of the argument of a complex number with nonnegative real part. (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
argrege0  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  (
Im `  ( log `  A ) )  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) )

Proof of Theorem argrege0
StepHypRef Expression
1 logcl 20471 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( log `  A
)  e.  CC )
213adant3 978 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  ( log `  A )  e.  CC )
32imcld 12005 . 2  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  (
Im `  ( log `  A ) )  e.  RR )
4 simp3 960 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  0  <_  ( Re `  A
) )
5 simp1 958 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  A  e.  CC )
65abscld 12243 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  ( abs `  A )  e.  RR )
76recnd 9119 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  ( abs `  A )  e.  CC )
87mul01d 9270 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  (
( abs `  A
)  x.  0 )  =  0 )
9 absrpcl 12098 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  e.  RR+ )
1093adant3 978 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  ( abs `  A )  e.  RR+ )
1110rpne0d 10658 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  ( abs `  A )  =/=  0 )
125, 7, 11divcld 9795 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  ( A  /  ( abs `  A
) )  e.  CC )
136, 12remul2d 12037 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  (
Re `  ( ( abs `  A )  x.  ( A  /  ( abs `  A ) ) ) )  =  ( ( abs `  A
)  x.  ( Re
`  ( A  / 
( abs `  A
) ) ) ) )
145, 7, 11divcan2d 9797 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  (
( abs `  A
)  x.  ( A  /  ( abs `  A
) ) )  =  A )
1514fveq2d 5735 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  (
Re `  ( ( abs `  A )  x.  ( A  /  ( abs `  A ) ) ) )  =  ( Re `  A ) )
1613, 15eqtr3d 2472 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  (
( abs `  A
)  x.  ( Re
`  ( A  / 
( abs `  A
) ) ) )  =  ( Re `  A ) )
174, 8, 163brtr4d 4245 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  (
( abs `  A
)  x.  0 )  <_  ( ( abs `  A )  x.  (
Re `  ( A  /  ( abs `  A
) ) ) ) )
18 0re 9096 . . . . . . . . . 10  |-  0  e.  RR
1918a1i 11 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  0  e.  RR )
2012recld 12004 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  (
Re `  ( A  /  ( abs `  A
) ) )  e.  RR )
2119, 20, 10lemul2d 10693 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  (
0  <_  ( Re `  ( A  /  ( abs `  A ) ) )  <->  ( ( abs `  A )  x.  0 )  <_  ( ( abs `  A )  x.  ( Re `  ( A  /  ( abs `  A
) ) ) ) ) )
2217, 21mpbird 225 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  0  <_  ( Re `  ( A  /  ( abs `  A
) ) ) )
23 efiarg 20507 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( exp `  (
_i  x.  ( Im `  ( log `  A
) ) ) )  =  ( A  / 
( abs `  A
) ) )
24233adant3 978 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  ( exp `  ( _i  x.  ( Im `  ( log `  A ) ) ) )  =  ( A  /  ( abs `  A
) ) )
2524fveq2d 5735 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  (
Re `  ( exp `  ( _i  x.  (
Im `  ( log `  A ) ) ) ) )  =  ( Re `  ( A  /  ( abs `  A
) ) ) )
2622, 25breqtrrd 4241 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  0  <_  ( Re `  ( exp `  ( _i  x.  ( Im `  ( log `  A ) ) ) ) ) )
27 recosval 12742 . . . . . . 7  |-  ( ( Im `  ( log `  A ) )  e.  RR  ->  ( cos `  ( Im `  ( log `  A ) ) )  =  ( Re
`  ( exp `  (
_i  x.  ( Im `  ( log `  A
) ) ) ) ) )
283, 27syl 16 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  ( cos `  ( Im `  ( log `  A ) ) )  =  ( Re `  ( exp `  ( _i  x.  (
Im `  ( log `  A ) ) ) ) ) )
2926, 28breqtrrd 4241 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  0  <_  ( cos `  (
Im `  ( log `  A ) ) ) )
30 halfpire 20380 . . . . . . . . . 10  |-  ( pi 
/  2 )  e.  RR
31 pire 20377 . . . . . . . . . . . 12  |-  pi  e.  RR
32 pipos 20378 . . . . . . . . . . . 12  |-  0  <  pi
3331, 32elrpii 10620 . . . . . . . . . . 11  |-  pi  e.  RR+
34 rphalfcl 10641 . . . . . . . . . . 11  |-  ( pi  e.  RR+  ->  ( pi 
/  2 )  e.  RR+ )
35 rpge0 10629 . . . . . . . . . . 11  |-  ( ( pi  /  2 )  e.  RR+  ->  0  <_ 
( pi  /  2
) )
3633, 34, 35mp2b 10 . . . . . . . . . 10  |-  0  <_  ( pi  /  2
)
37 rphalflt 10643 . . . . . . . . . . . 12  |-  ( pi  e.  RR+  ->  ( pi 
/  2 )  < 
pi )
3833, 37ax-mp 5 . . . . . . . . . . 11  |-  ( pi 
/  2 )  < 
pi
3930, 31, 38ltleii 9201 . . . . . . . . . 10  |-  ( pi 
/  2 )  <_  pi
4018, 31elicc2i 10981 . . . . . . . . . 10  |-  ( ( pi  /  2 )  e.  ( 0 [,] pi )  <->  ( (
pi  /  2 )  e.  RR  /\  0  <_  ( pi  /  2
)  /\  ( pi  /  2 )  <_  pi ) )
4130, 36, 39, 40mpbir3an 1137 . . . . . . . . 9  |-  ( pi 
/  2 )  e.  ( 0 [,] pi )
423recnd 9119 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  (
Im `  ( log `  A ) )  e.  CC )
4342abscld 12243 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  ( abs `  ( Im `  ( log `  A ) ) )  e.  RR )
4442absge0d 12251 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  0  <_  ( abs `  (
Im `  ( log `  A ) ) ) )
45 logimcl 20472 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( -u pi  <  (
Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi ) )
46453adant3 978 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  ( -u pi  <  ( Im
`  ( log `  A
) )  /\  (
Im `  ( log `  A ) )  <_  pi ) )
4746simpld 447 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  -u pi  <  ( Im `  ( log `  A ) ) )
4831renegcli 9367 . . . . . . . . . . . . 13  |-  -u pi  e.  RR
49 ltle 9168 . . . . . . . . . . . . 13  |-  ( (
-u pi  e.  RR  /\  ( Im `  ( log `  A ) )  e.  RR )  -> 
( -u pi  <  (
Im `  ( log `  A ) )  ->  -u pi  <_  ( Im `  ( log `  A
) ) ) )
5048, 3, 49sylancr 646 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  ( -u pi  <  ( Im
`  ( log `  A
) )  ->  -u pi  <_  ( Im `  ( log `  A ) ) ) )
5147, 50mpd 15 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  -u pi  <_  ( Im `  ( log `  A ) ) )
5246simprd 451 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  (
Im `  ( log `  A ) )  <_  pi )
53 absle 12124 . . . . . . . . . . . 12  |-  ( ( ( Im `  ( log `  A ) )  e.  RR  /\  pi  e.  RR )  ->  (
( abs `  (
Im `  ( log `  A ) ) )  <_  pi  <->  ( -u pi  <_  ( Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi )
) )
543, 31, 53sylancl 645 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  (
( abs `  (
Im `  ( log `  A ) ) )  <_  pi  <->  ( -u pi  <_  ( Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi )
) )
5551, 52, 54mpbir2and 890 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  ( abs `  ( Im `  ( log `  A ) ) )  <_  pi )
5618, 31elicc2i 10981 . . . . . . . . . 10  |-  ( ( abs `  ( Im
`  ( log `  A
) ) )  e.  ( 0 [,] pi ) 
<->  ( ( abs `  (
Im `  ( log `  A ) ) )  e.  RR  /\  0  <_  ( abs `  (
Im `  ( log `  A ) ) )  /\  ( abs `  (
Im `  ( log `  A ) ) )  <_  pi ) )
5743, 44, 55, 56syl3anbrc 1139 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  ( abs `  ( Im `  ( log `  A ) ) )  e.  ( 0 [,] pi ) )
58 cosord 20439 . . . . . . . . 9  |-  ( ( ( pi  /  2
)  e.  ( 0 [,] pi )  /\  ( abs `  ( Im
`  ( log `  A
) ) )  e.  ( 0 [,] pi ) )  ->  (
( pi  /  2
)  <  ( abs `  ( Im `  ( log `  A ) ) )  <->  ( cos `  ( abs `  ( Im `  ( log `  A ) ) ) )  < 
( cos `  (
pi  /  2 ) ) ) )
5941, 57, 58sylancr 646 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  (
( pi  /  2
)  <  ( abs `  ( Im `  ( log `  A ) ) )  <->  ( cos `  ( abs `  ( Im `  ( log `  A ) ) ) )  < 
( cos `  (
pi  /  2 ) ) ) )
60 fveq2 5731 . . . . . . . . . . 11  |-  ( ( abs `  ( Im
`  ( log `  A
) ) )  =  ( Im `  ( log `  A ) )  ->  ( cos `  ( abs `  ( Im `  ( log `  A ) ) ) )  =  ( cos `  (
Im `  ( log `  A ) ) ) )
6160a1i 11 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  (
( abs `  (
Im `  ( log `  A ) ) )  =  ( Im `  ( log `  A ) )  ->  ( cos `  ( abs `  (
Im `  ( log `  A ) ) ) )  =  ( cos `  ( Im `  ( log `  A ) ) ) ) )
62 cosneg 12753 . . . . . . . . . . . 12  |-  ( ( Im `  ( log `  A ) )  e.  CC  ->  ( cos `  -u ( Im `  ( log `  A ) ) )  =  ( cos `  ( Im `  ( log `  A ) ) ) )
6342, 62syl 16 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  ( cos `  -u ( Im `  ( log `  A ) ) )  =  ( cos `  ( Im
`  ( log `  A
) ) ) )
64 fveq2 5731 . . . . . . . . . . . 12  |-  ( ( abs `  ( Im
`  ( log `  A
) ) )  = 
-u ( Im `  ( log `  A ) )  ->  ( cos `  ( abs `  (
Im `  ( log `  A ) ) ) )  =  ( cos `  -u ( Im `  ( log `  A ) ) ) )
6564eqeq1d 2446 . . . . . . . . . . 11  |-  ( ( abs `  ( Im
`  ( log `  A
) ) )  = 
-u ( Im `  ( log `  A ) )  ->  ( ( cos `  ( abs `  (
Im `  ( log `  A ) ) ) )  =  ( cos `  ( Im `  ( log `  A ) ) )  <->  ( cos `  -u (
Im `  ( log `  A ) ) )  =  ( cos `  (
Im `  ( log `  A ) ) ) ) )
6663, 65syl5ibrcom 215 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  (
( abs `  (
Im `  ( log `  A ) ) )  =  -u ( Im `  ( log `  A ) )  ->  ( cos `  ( abs `  (
Im `  ( log `  A ) ) ) )  =  ( cos `  ( Im `  ( log `  A ) ) ) ) )
673absord 12223 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  (
( abs `  (
Im `  ( log `  A ) ) )  =  ( Im `  ( log `  A ) )  \/  ( abs `  ( Im `  ( log `  A ) ) )  =  -u (
Im `  ( log `  A ) ) ) )
6861, 66, 67mpjaod 372 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  ( cos `  ( abs `  (
Im `  ( log `  A ) ) ) )  =  ( cos `  ( Im `  ( log `  A ) ) ) )
69 coshalfpi 20382 . . . . . . . . . 10  |-  ( cos `  ( pi  /  2
) )  =  0
7069a1i 11 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  ( cos `  ( pi  / 
2 ) )  =  0 )
7168, 70breq12d 4228 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  (
( cos `  ( abs `  ( Im `  ( log `  A ) ) ) )  < 
( cos `  (
pi  /  2 ) )  <->  ( cos `  (
Im `  ( log `  A ) ) )  <  0 ) )
7259, 71bitrd 246 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  (
( pi  /  2
)  <  ( abs `  ( Im `  ( log `  A ) ) )  <->  ( cos `  (
Im `  ( log `  A ) ) )  <  0 ) )
7372notbid 287 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  ( -.  ( pi  /  2
)  <  ( abs `  ( Im `  ( log `  A ) ) )  <->  -.  ( cos `  ( Im `  ( log `  A ) ) )  <  0 ) )
74 lenlt 9159 . . . . . . 7  |-  ( ( ( abs `  (
Im `  ( log `  A ) ) )  e.  RR  /\  (
pi  /  2 )  e.  RR )  -> 
( ( abs `  (
Im `  ( log `  A ) ) )  <_  ( pi  / 
2 )  <->  -.  (
pi  /  2 )  <  ( abs `  (
Im `  ( log `  A ) ) ) ) )
7543, 30, 74sylancl 645 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  (
( abs `  (
Im `  ( log `  A ) ) )  <_  ( pi  / 
2 )  <->  -.  (
pi  /  2 )  <  ( abs `  (
Im `  ( log `  A ) ) ) ) )
763recoscld 12750 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  ( cos `  ( Im `  ( log `  A ) ) )  e.  RR )
77 lenlt 9159 . . . . . . 7  |-  ( ( 0  e.  RR  /\  ( cos `  ( Im
`  ( log `  A
) ) )  e.  RR )  ->  (
0  <_  ( cos `  ( Im `  ( log `  A ) ) )  <->  -.  ( cos `  ( Im `  ( log `  A ) ) )  <  0 ) )
7818, 76, 77sylancr 646 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  (
0  <_  ( cos `  ( Im `  ( log `  A ) ) )  <->  -.  ( cos `  ( Im `  ( log `  A ) ) )  <  0 ) )
7973, 75, 783bitr4d 278 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  (
( abs `  (
Im `  ( log `  A ) ) )  <_  ( pi  / 
2 )  <->  0  <_  ( cos `  ( Im
`  ( log `  A
) ) ) ) )
8029, 79mpbird 225 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  ( abs `  ( Im `  ( log `  A ) ) )  <_  (
pi  /  2 ) )
81 absle 12124 . . . . 5  |-  ( ( ( Im `  ( log `  A ) )  e.  RR  /\  (
pi  /  2 )  e.  RR )  -> 
( ( abs `  (
Im `  ( log `  A ) ) )  <_  ( pi  / 
2 )  <->  ( -u (
pi  /  2 )  <_  ( Im `  ( log `  A ) )  /\  ( Im
`  ( log `  A
) )  <_  (
pi  /  2 ) ) ) )
823, 30, 81sylancl 645 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  (
( abs `  (
Im `  ( log `  A ) ) )  <_  ( pi  / 
2 )  <->  ( -u (
pi  /  2 )  <_  ( Im `  ( log `  A ) )  /\  ( Im
`  ( log `  A
) )  <_  (
pi  /  2 ) ) ) )
8380, 82mpbid 203 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  ( -u ( pi  /  2
)  <_  ( Im `  ( log `  A
) )  /\  (
Im `  ( log `  A ) )  <_ 
( pi  /  2
) ) )
8483simpld 447 . 2  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  -u (
pi  /  2 )  <_  ( Im `  ( log `  A ) ) )
8583simprd 451 . 2  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  (
Im `  ( log `  A ) )  <_ 
( pi  /  2
) )
8630renegcli 9367 . . 3  |-  -u (
pi  /  2 )  e.  RR
8786, 30elicc2i 10981 . 2  |-  ( ( Im `  ( log `  A ) )  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) )  <->  ( (
Im `  ( log `  A ) )  e.  RR  /\  -u (
pi  /  2 )  <_  ( Im `  ( log `  A ) )  /\  ( Im
`  ( log `  A
) )  <_  (
pi  /  2 ) ) )
883, 84, 85, 87syl3anbrc 1139 1  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  0  <_  ( Re `  A
) )  ->  (
Im `  ( log `  A ) )  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   class class class wbr 4215   ` cfv 5457  (class class class)co 6084   CCcc 8993   RRcr 8994   0cc0 8995   _ici 8997    x. cmul 9000    < clt 9125    <_ cle 9126   -ucneg 9297    / cdiv 9682   2c2 10054   RR+crp 10617   [,]cicc 10924   Recre 11907   Imcim 11908   abscabs 12044   expce 12669   cosccos 12672   picpi 12674   logclog 20457
This theorem is referenced by:  logimul  20514  isosctrlem1  20667  asinbnd  20744  isosctrlem1ALT  29120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073  ax-addf 9074  ax-mulf 9075
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-of 6308  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-2o 6728  df-oadd 6731  df-er 6908  df-map 7023  df-pm 7024  df-ixp 7067  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-fi 7419  df-sup 7449  df-oi 7482  df-card 7831  df-cda 8053  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-4 10065  df-5 10066  df-6 10067  df-7 10068  df-8 10069  df-9 10070  df-10 10071  df-n0 10227  df-z 10288  df-dec 10388  df-uz 10494  df-q 10580  df-rp 10618  df-xneg 10715  df-xadd 10716  df-xmul 10717  df-ioo 10925  df-ioc 10926  df-ico 10927  df-icc 10928  df-fz 11049  df-fzo 11141  df-fl 11207  df-mod 11256  df-seq 11329  df-exp 11388  df-fac 11572  df-bc 11599  df-hash 11624  df-shft 11887  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-limsup 12270  df-clim 12287  df-rlim 12288  df-sum 12485  df-ef 12675  df-sin 12677  df-cos 12678  df-pi 12680  df-struct 13476  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-ress 13481  df-plusg 13547  df-mulr 13548  df-starv 13549  df-sca 13550  df-vsca 13551  df-tset 13553  df-ple 13554  df-ds 13556  df-unif 13557  df-hom 13558  df-cco 13559  df-rest 13655  df-topn 13656  df-topgen 13672  df-pt 13673  df-prds 13676  df-xrs 13731  df-0g 13732  df-gsum 13733  df-qtop 13738  df-imas 13739  df-xps 13741  df-mre 13816  df-mrc 13817  df-acs 13819  df-mnd 14695  df-submnd 14744  df-mulg 14820  df-cntz 15121  df-cmn 15419  df-psmet 16699  df-xmet 16700  df-met 16701  df-bl 16702  df-mopn 16703  df-fbas 16704  df-fg 16705  df-cnfld 16709  df-top 16968  df-bases 16970  df-topon 16971  df-topsp 16972  df-cld 17088  df-ntr 17089  df-cls 17090  df-nei 17167  df-lp 17205  df-perf 17206  df-cn 17296  df-cnp 17297  df-haus 17384  df-tx 17599  df-hmeo 17792  df-fil 17883  df-fm 17975  df-flim 17976  df-flf 17977  df-xms 18355  df-ms 18356  df-tms 18357  df-cncf 18913  df-limc 19758  df-dv 19759  df-log 20459
  Copyright terms: Public domain W3C validator