MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwass Structured version   Unicode version

Theorem arwass 14219
Description: Associativity of composition in a category using arrow notation. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwlid.h  |-  H  =  (Homa
`  C )
arwlid.o  |-  .x.  =  (compa `  C )
arwlid.a  |-  .1.  =  (Ida `  C )
arwlid.f  |-  ( ph  ->  F  e.  ( X H Y ) )
arwass.g  |-  ( ph  ->  G  e.  ( Y H Z ) )
arwass.k  |-  ( ph  ->  K  e.  ( Z H W ) )
Assertion
Ref Expression
arwass  |-  ( ph  ->  ( ( K  .x.  G )  .x.  F
)  =  ( K 
.x.  ( G  .x.  F ) ) )

Proof of Theorem arwass
StepHypRef Expression
1 eqid 2435 . . . . 5  |-  ( Base `  C )  =  (
Base `  C )
2 eqid 2435 . . . . 5  |-  (  Hom  `  C )  =  (  Hom  `  C )
3 eqid 2435 . . . . 5  |-  (comp `  C )  =  (comp `  C )
4 arwlid.f . . . . . 6  |-  ( ph  ->  F  e.  ( X H Y ) )
5 arwlid.h . . . . . . 7  |-  H  =  (Homa
`  C )
65homarcl 14173 . . . . . 6  |-  ( F  e.  ( X H Y )  ->  C  e.  Cat )
74, 6syl 16 . . . . 5  |-  ( ph  ->  C  e.  Cat )
85, 1homarcl2 14180 . . . . . . 7  |-  ( F  e.  ( X H Y )  ->  ( X  e.  ( Base `  C )  /\  Y  e.  ( Base `  C
) ) )
94, 8syl 16 . . . . . 6  |-  ( ph  ->  ( X  e.  (
Base `  C )  /\  Y  e.  ( Base `  C ) ) )
109simpld 446 . . . . 5  |-  ( ph  ->  X  e.  ( Base `  C ) )
119simprd 450 . . . . 5  |-  ( ph  ->  Y  e.  ( Base `  C ) )
12 arwass.k . . . . . . 7  |-  ( ph  ->  K  e.  ( Z H W ) )
135, 1homarcl2 14180 . . . . . . 7  |-  ( K  e.  ( Z H W )  ->  ( Z  e.  ( Base `  C )  /\  W  e.  ( Base `  C
) ) )
1412, 13syl 16 . . . . . 6  |-  ( ph  ->  ( Z  e.  (
Base `  C )  /\  W  e.  ( Base `  C ) ) )
1514simpld 446 . . . . 5  |-  ( ph  ->  Z  e.  ( Base `  C ) )
165, 2homahom 14184 . . . . . 6  |-  ( F  e.  ( X H Y )  ->  ( 2nd `  F )  e.  ( X (  Hom  `  C ) Y ) )
174, 16syl 16 . . . . 5  |-  ( ph  ->  ( 2nd `  F
)  e.  ( X (  Hom  `  C
) Y ) )
18 arwass.g . . . . . 6  |-  ( ph  ->  G  e.  ( Y H Z ) )
195, 2homahom 14184 . . . . . 6  |-  ( G  e.  ( Y H Z )  ->  ( 2nd `  G )  e.  ( Y (  Hom  `  C ) Z ) )
2018, 19syl 16 . . . . 5  |-  ( ph  ->  ( 2nd `  G
)  e.  ( Y (  Hom  `  C
) Z ) )
2114simprd 450 . . . . 5  |-  ( ph  ->  W  e.  ( Base `  C ) )
225, 2homahom 14184 . . . . . 6  |-  ( K  e.  ( Z H W )  ->  ( 2nd `  K )  e.  ( Z (  Hom  `  C ) W ) )
2312, 22syl 16 . . . . 5  |-  ( ph  ->  ( 2nd `  K
)  e.  ( Z (  Hom  `  C
) W ) )
241, 2, 3, 7, 10, 11, 15, 17, 20, 21, 23catass 13901 . . . 4  |-  ( ph  ->  ( ( ( 2nd `  K ) ( <. Y ,  Z >. (comp `  C ) W ) ( 2nd `  G
) ) ( <. X ,  Y >. (comp `  C ) W ) ( 2nd `  F
) )  =  ( ( 2nd `  K
) ( <. X ,  Z >. (comp `  C
) W ) ( ( 2nd `  G
) ( <. X ,  Y >. (comp `  C
) Z ) ( 2nd `  F ) ) ) )
25 arwlid.o . . . . . 6  |-  .x.  =  (compa `  C )
2625, 5, 18, 12, 3coa2 14214 . . . . 5  |-  ( ph  ->  ( 2nd `  ( K  .x.  G ) )  =  ( ( 2nd `  K ) ( <. Y ,  Z >. (comp `  C ) W ) ( 2nd `  G
) ) )
2726oveq1d 6088 . . . 4  |-  ( ph  ->  ( ( 2nd `  ( K  .x.  G ) ) ( <. X ,  Y >. (comp `  C ) W ) ( 2nd `  F ) )  =  ( ( ( 2nd `  K ) ( <. Y ,  Z >. (comp `  C ) W ) ( 2nd `  G
) ) ( <. X ,  Y >. (comp `  C ) W ) ( 2nd `  F
) ) )
2825, 5, 4, 18, 3coa2 14214 . . . . 5  |-  ( ph  ->  ( 2nd `  ( G  .x.  F ) )  =  ( ( 2nd `  G ) ( <. X ,  Y >. (comp `  C ) Z ) ( 2nd `  F
) ) )
2928oveq2d 6089 . . . 4  |-  ( ph  ->  ( ( 2nd `  K
) ( <. X ,  Z >. (comp `  C
) W ) ( 2nd `  ( G 
.x.  F ) ) )  =  ( ( 2nd `  K ) ( <. X ,  Z >. (comp `  C ) W ) ( ( 2nd `  G ) ( <. X ,  Y >. (comp `  C ) Z ) ( 2nd `  F ) ) ) )
3024, 27, 293eqtr4d 2477 . . 3  |-  ( ph  ->  ( ( 2nd `  ( K  .x.  G ) ) ( <. X ,  Y >. (comp `  C ) W ) ( 2nd `  F ) )  =  ( ( 2nd `  K
) ( <. X ,  Z >. (comp `  C
) W ) ( 2nd `  ( G 
.x.  F ) ) ) )
3130oteq3d 3990 . 2  |-  ( ph  -> 
<. X ,  W , 
( ( 2nd `  ( K  .x.  G ) ) ( <. X ,  Y >. (comp `  C ) W ) ( 2nd `  F ) ) >.  =  <. X ,  W ,  ( ( 2nd `  K ) ( <. X ,  Z >. (comp `  C ) W ) ( 2nd `  ( G  .x.  F ) ) ) >. )
3225, 5, 18, 12coahom 14215 . . 3  |-  ( ph  ->  ( K  .x.  G
)  e.  ( Y H W ) )
3325, 5, 4, 32, 3coaval 14213 . 2  |-  ( ph  ->  ( ( K  .x.  G )  .x.  F
)  =  <. X ,  W ,  ( ( 2nd `  ( K  .x.  G ) ) (
<. X ,  Y >. (comp `  C ) W ) ( 2nd `  F
) ) >. )
3425, 5, 4, 18coahom 14215 . . 3  |-  ( ph  ->  ( G  .x.  F
)  e.  ( X H Z ) )
3525, 5, 34, 12, 3coaval 14213 . 2  |-  ( ph  ->  ( K  .x.  ( G  .x.  F ) )  =  <. X ,  W ,  ( ( 2nd `  K ) ( <. X ,  Z >. (comp `  C ) W ) ( 2nd `  ( G  .x.  F ) ) ) >. )
3631, 33, 353eqtr4d 2477 1  |-  ( ph  ->  ( ( K  .x.  G )  .x.  F
)  =  ( K 
.x.  ( G  .x.  F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   <.cop 3809   <.cotp 3810   ` cfv 5446  (class class class)co 6073   2ndc2nd 6340   Basecbs 13459    Hom chom 13530  compcco 13531   Catccat 13879  Homachoma 14168  Idacida 14198  compaccoa 14199
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-ot 3816  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-cat 13883  df-doma 14169  df-coda 14170  df-homa 14171  df-arw 14172  df-coa 14201
  Copyright terms: Public domain W3C validator