MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwdm Structured version   Unicode version

Theorem arwdm 14202
Description: The domain of an arrow is an object. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwrcl.a  |-  A  =  (Nat `  C )
arwdm.b  |-  B  =  ( Base `  C
)
Assertion
Ref Expression
arwdm  |-  ( F  e.  A  ->  (domA `  F )  e.  B )

Proof of Theorem arwdm
StepHypRef Expression
1 arwrcl.a . . . 4  |-  A  =  (Nat `  C )
2 eqid 2436 . . . 4  |-  (Homa `  C
)  =  (Homa `  C
)
31, 2arwhoma 14200 . . 3  |-  ( F  e.  A  ->  F  e.  ( (domA `  F ) (Homa `  C
) (coda
`  F ) ) )
4 arwdm.b . . . 4  |-  B  =  ( Base `  C
)
52, 4homarcl2 14190 . . 3  |-  ( F  e.  ( (domA `  F ) (Homa
`  C ) (coda `  F ) )  -> 
( (domA `  F )  e.  B  /\  (coda
`  F )  e.  B ) )
63, 5syl 16 . 2  |-  ( F  e.  A  ->  (
(domA `  F )  e.  B  /\  (coda
`  F )  e.  B ) )
76simpld 446 1  |-  ( F  e.  A  ->  (domA `  F )  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   ` cfv 5454  (class class class)co 6081   Basecbs 13469  domAcdoma 14175  codaccoda 14176  Natcarw 14177  Homachoma 14178
This theorem is referenced by:  dmaf  14204
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-1st 6349  df-2nd 6350  df-doma 14179  df-coda 14180  df-homa 14181  df-arw 14182
  Copyright terms: Public domain W3C validator