MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwhoma Unicode version

Theorem arwhoma 14159
Description: An arrow is contained in the hom-set corresponding to its domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwrcl.a  |-  A  =  (Nat `  C )
arwhoma.h  |-  H  =  (Homa
`  C )
Assertion
Ref Expression
arwhoma  |-  ( F  e.  A  ->  F  e.  ( (domA `  F ) H (coda `  F ) ) )

Proof of Theorem arwhoma
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 arwrcl.a . . . . . . 7  |-  A  =  (Nat `  C )
2 arwhoma.h . . . . . . 7  |-  H  =  (Homa
`  C )
31, 2arwval 14157 . . . . . 6  |-  A  = 
U. ran  H
43eleq2i 2472 . . . . 5  |-  ( F  e.  A  <->  F  e.  U.
ran  H )
54biimpi 187 . . . 4  |-  ( F  e.  A  ->  F  e.  U. ran  H )
6 eqid 2408 . . . . . 6  |-  ( Base `  C )  =  (
Base `  C )
71arwrcl 14158 . . . . . 6  |-  ( F  e.  A  ->  C  e.  Cat )
82, 6, 7homaf 14144 . . . . 5  |-  ( F  e.  A  ->  H : ( ( Base `  C )  X.  ( Base `  C ) ) --> ~P ( ( (
Base `  C )  X.  ( Base `  C
) )  X.  _V ) )
9 ffn 5554 . . . . 5  |-  ( H : ( ( Base `  C )  X.  ( Base `  C ) ) --> ~P ( ( (
Base `  C )  X.  ( Base `  C
) )  X.  _V )  ->  H  Fn  (
( Base `  C )  X.  ( Base `  C
) ) )
10 fnunirn 5962 . . . . 5  |-  ( H  Fn  ( ( Base `  C )  X.  ( Base `  C ) )  ->  ( F  e. 
U. ran  H  <->  E. z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) F  e.  ( H `  z ) ) )
118, 9, 103syl 19 . . . 4  |-  ( F  e.  A  ->  ( F  e.  U. ran  H  <->  E. z  e.  ( (
Base `  C )  X.  ( Base `  C
) ) F  e.  ( H `  z
) ) )
125, 11mpbid 202 . . 3  |-  ( F  e.  A  ->  E. z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) F  e.  ( H `  z ) )
13 fveq2 5691 . . . . . 6  |-  ( z  =  <. x ,  y
>.  ->  ( H `  z )  =  ( H `  <. x ,  y >. )
)
14 df-ov 6047 . . . . . 6  |-  ( x H y )  =  ( H `  <. x ,  y >. )
1513, 14syl6eqr 2458 . . . . 5  |-  ( z  =  <. x ,  y
>.  ->  ( H `  z )  =  ( x H y ) )
1615eleq2d 2475 . . . 4  |-  ( z  =  <. x ,  y
>.  ->  ( F  e.  ( H `  z
)  <->  F  e.  (
x H y ) ) )
1716rexxp 4980 . . 3  |-  ( E. z  e.  ( (
Base `  C )  X.  ( Base `  C
) ) F  e.  ( H `  z
)  <->  E. x  e.  (
Base `  C ) E. y  e.  ( Base `  C ) F  e.  ( x H y ) )
1812, 17sylib 189 . 2  |-  ( F  e.  A  ->  E. x  e.  ( Base `  C
) E. y  e.  ( Base `  C
) F  e.  ( x H y ) )
19 id 20 . . . . 5  |-  ( F  e.  ( x H y )  ->  F  e.  ( x H y ) )
202homadm 14154 . . . . . 6  |-  ( F  e.  ( x H y )  ->  (domA `  F )  =  x )
212homacd 14155 . . . . . 6  |-  ( F  e.  ( x H y )  ->  (coda `  F
)  =  y )
2220, 21oveq12d 6062 . . . . 5  |-  ( F  e.  ( x H y )  ->  (
(domA `  F ) H (coda `  F ) )  =  ( x H y ) )
2319, 22eleqtrrd 2485 . . . 4  |-  ( F  e.  ( x H y )  ->  F  e.  ( (domA `  F ) H (coda `  F ) ) )
2423rexlimivw 2790 . . 3  |-  ( E. y  e.  ( Base `  C ) F  e.  ( x H y )  ->  F  e.  ( (domA `  F ) H (coda `  F ) ) )
2524rexlimivw 2790 . 2  |-  ( E. x  e.  ( Base `  C ) E. y  e.  ( Base `  C
) F  e.  ( x H y )  ->  F  e.  ( (domA `  F ) H (coda `  F ) ) )
2618, 25syl 16 1  |-  ( F  e.  A  ->  F  e.  ( (domA `  F ) H (coda `  F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    = wceq 1649    e. wcel 1721   E.wrex 2671   _Vcvv 2920   ~Pcpw 3763   <.cop 3781   U.cuni 3979    X. cxp 4839   ran crn 4842    Fn wfn 5412   -->wf 5413   ` cfv 5417  (class class class)co 6044   Basecbs 13428  domAcdoma 14134  codaccoda 14135  Natcarw 14136  Homachoma 14137
This theorem is referenced by:  arwdm  14161  arwcd  14162  arwhom  14165  arwdmcd  14166  coapm  14185
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-1st 6312  df-2nd 6313  df-doma 14138  df-coda 14139  df-homa 14140  df-arw 14141
  Copyright terms: Public domain W3C validator