MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asclghm Unicode version

Theorem asclghm 16094
Description: The algebra scalars function is a group homomorphism. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
asclf.a  |-  A  =  (algSc `  W )
asclf.f  |-  F  =  (Scalar `  W )
asclf.r  |-  ( ph  ->  W  e.  Ring )
asclf.l  |-  ( ph  ->  W  e.  LMod )
Assertion
Ref Expression
asclghm  |-  ( ph  ->  A  e.  ( F 
GrpHom  W ) )

Proof of Theorem asclghm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2296 . 2  |-  ( Base `  F )  =  (
Base `  F )
2 eqid 2296 . 2  |-  ( Base `  W )  =  (
Base `  W )
3 eqid 2296 . 2  |-  ( +g  `  F )  =  ( +g  `  F )
4 eqid 2296 . 2  |-  ( +g  `  W )  =  ( +g  `  W )
5 asclf.l . . . 4  |-  ( ph  ->  W  e.  LMod )
6 asclf.f . . . . 5  |-  F  =  (Scalar `  W )
76lmodrng 15651 . . . 4  |-  ( W  e.  LMod  ->  F  e. 
Ring )
85, 7syl 15 . . 3  |-  ( ph  ->  F  e.  Ring )
9 rnggrp 15362 . . 3  |-  ( F  e.  Ring  ->  F  e. 
Grp )
108, 9syl 15 . 2  |-  ( ph  ->  F  e.  Grp )
11 asclf.r . . 3  |-  ( ph  ->  W  e.  Ring )
12 rnggrp 15362 . . 3  |-  ( W  e.  Ring  ->  W  e. 
Grp )
1311, 12syl 15 . 2  |-  ( ph  ->  W  e.  Grp )
14 asclf.a . . 3  |-  A  =  (algSc `  W )
1514, 6, 11, 5, 1, 2asclf 16093 . 2  |-  ( ph  ->  A : ( Base `  F ) --> ( Base `  W ) )
165adantr 451 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  F
)  /\  y  e.  ( Base `  F )
) )  ->  W  e.  LMod )
17 simprl 732 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  F
)  /\  y  e.  ( Base `  F )
) )  ->  x  e.  ( Base `  F
) )
18 simprr 733 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  F
)  /\  y  e.  ( Base `  F )
) )  ->  y  e.  ( Base `  F
) )
19 eqid 2296 . . . . . . 7  |-  ( 1r
`  W )  =  ( 1r `  W
)
202, 19rngidcl 15377 . . . . . 6  |-  ( W  e.  Ring  ->  ( 1r
`  W )  e.  ( Base `  W
) )
2111, 20syl 15 . . . . 5  |-  ( ph  ->  ( 1r `  W
)  e.  ( Base `  W ) )
2221adantr 451 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  F
)  /\  y  e.  ( Base `  F )
) )  ->  ( 1r `  W )  e.  ( Base `  W
) )
23 eqid 2296 . . . . 5  |-  ( .s
`  W )  =  ( .s `  W
)
242, 4, 6, 23, 1, 3lmodvsdir 15668 . . . 4  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  F )  /\  y  e.  ( Base `  F
)  /\  ( 1r `  W )  e.  (
Base `  W )
) )  ->  (
( x ( +g  `  F ) y ) ( .s `  W
) ( 1r `  W ) )  =  ( ( x ( .s `  W ) ( 1r `  W
) ) ( +g  `  W ) ( y ( .s `  W
) ( 1r `  W ) ) ) )
2516, 17, 18, 22, 24syl13anc 1184 . . 3  |-  ( (
ph  /\  ( x  e.  ( Base `  F
)  /\  y  e.  ( Base `  F )
) )  ->  (
( x ( +g  `  F ) y ) ( .s `  W
) ( 1r `  W ) )  =  ( ( x ( .s `  W ) ( 1r `  W
) ) ( +g  `  W ) ( y ( .s `  W
) ( 1r `  W ) ) ) )
261, 3grpcl 14511 . . . . . 6  |-  ( ( F  e.  Grp  /\  x  e.  ( Base `  F )  /\  y  e.  ( Base `  F
) )  ->  (
x ( +g  `  F
) y )  e.  ( Base `  F
) )
27263expb 1152 . . . . 5  |-  ( ( F  e.  Grp  /\  ( x  e.  ( Base `  F )  /\  y  e.  ( Base `  F ) ) )  ->  ( x ( +g  `  F ) y )  e.  (
Base `  F )
)
2810, 27sylan 457 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  F
)  /\  y  e.  ( Base `  F )
) )  ->  (
x ( +g  `  F
) y )  e.  ( Base `  F
) )
2914, 6, 1, 23, 19asclval 16091 . . . 4  |-  ( ( x ( +g  `  F
) y )  e.  ( Base `  F
)  ->  ( A `  ( x ( +g  `  F ) y ) )  =  ( ( x ( +g  `  F
) y ) ( .s `  W ) ( 1r `  W
) ) )
3028, 29syl 15 . . 3  |-  ( (
ph  /\  ( x  e.  ( Base `  F
)  /\  y  e.  ( Base `  F )
) )  ->  ( A `  ( x
( +g  `  F ) y ) )  =  ( ( x ( +g  `  F ) y ) ( .s
`  W ) ( 1r `  W ) ) )
3114, 6, 1, 23, 19asclval 16091 . . . . 5  |-  ( x  e.  ( Base `  F
)  ->  ( A `  x )  =  ( x ( .s `  W ) ( 1r
`  W ) ) )
3214, 6, 1, 23, 19asclval 16091 . . . . 5  |-  ( y  e.  ( Base `  F
)  ->  ( A `  y )  =  ( y ( .s `  W ) ( 1r
`  W ) ) )
3331, 32oveqan12d 5893 . . . 4  |-  ( ( x  e.  ( Base `  F )  /\  y  e.  ( Base `  F
) )  ->  (
( A `  x
) ( +g  `  W
) ( A `  y ) )  =  ( ( x ( .s `  W ) ( 1r `  W
) ) ( +g  `  W ) ( y ( .s `  W
) ( 1r `  W ) ) ) )
3433adantl 452 . . 3  |-  ( (
ph  /\  ( x  e.  ( Base `  F
)  /\  y  e.  ( Base `  F )
) )  ->  (
( A `  x
) ( +g  `  W
) ( A `  y ) )  =  ( ( x ( .s `  W ) ( 1r `  W
) ) ( +g  `  W ) ( y ( .s `  W
) ( 1r `  W ) ) ) )
3525, 30, 343eqtr4d 2338 . 2  |-  ( (
ph  /\  ( x  e.  ( Base `  F
)  /\  y  e.  ( Base `  F )
) )  ->  ( A `  ( x
( +g  `  F ) y ) )  =  ( ( A `  x ) ( +g  `  W ) ( A `
 y ) ) )
361, 2, 3, 4, 10, 13, 15, 35isghmd 14708 1  |-  ( ph  ->  A  e.  ( F 
GrpHom  W ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   ` cfv 5271  (class class class)co 5874   Basecbs 13164   +g cplusg 13224  Scalarcsca 13227   .scvsca 13228   Grpcgrp 14378    GrpHom cghm 14696   Ringcrg 15353   1rcur 15355   LModclmod 15643  algSccascl 16068
This theorem is referenced by:  asclrhm  16097
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-plusg 13237  df-0g 13420  df-mnd 14383  df-grp 14505  df-ghm 14697  df-mgp 15342  df-rng 15356  df-ur 15358  df-lmod 15645  df-ascl 16071
  Copyright terms: Public domain W3C validator