MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinlem Unicode version

Theorem asinlem 20180
Description: The argument to the logarithm in df-asin 20177 is always nonzero. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
asinlem  |-  ( A  e.  CC  ->  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) )  =/=  0
)

Proof of Theorem asinlem
StepHypRef Expression
1 ax-icn 8812 . . . 4  |-  _i  e.  CC
2 mulcl 8837 . . . 4  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
31, 2mpan 651 . . 3  |-  ( A  e.  CC  ->  (
_i  x.  A )  e.  CC )
4 ax-1cn 8811 . . . . 5  |-  1  e.  CC
5 sqcl 11182 . . . . 5  |-  ( A  e.  CC  ->  ( A ^ 2 )  e.  CC )
6 subcl 9067 . . . . 5  |-  ( ( 1  e.  CC  /\  ( A ^ 2 )  e.  CC )  -> 
( 1  -  ( A ^ 2 ) )  e.  CC )
74, 5, 6sylancr 644 . . . 4  |-  ( A  e.  CC  ->  (
1  -  ( A ^ 2 ) )  e.  CC )
87sqrcld 11935 . . 3  |-  ( A  e.  CC  ->  ( sqr `  ( 1  -  ( A ^ 2 ) ) )  e.  CC )
93, 8subnegd 9180 . 2  |-  ( A  e.  CC  ->  (
( _i  x.  A
)  -  -u ( sqr `  ( 1  -  ( A ^ 2 ) ) ) )  =  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) )
10 ax-1ne0 8822 . . . . . . 7  |-  1  =/=  0
1110necomi 2541 . . . . . 6  |-  0  =/=  1
12 0cn 8847 . . . . . . . 8  |-  0  e.  CC
1312a1i 10 . . . . . . 7  |-  ( A  e.  CC  ->  0  e.  CC )
144a1i 10 . . . . . . 7  |-  ( A  e.  CC  ->  1  e.  CC )
15 subcan2 9088 . . . . . . . 8  |-  ( ( 0  e.  CC  /\  1  e.  CC  /\  ( A ^ 2 )  e.  CC )  ->  (
( 0  -  ( A ^ 2 ) )  =  ( 1  -  ( A ^ 2 ) )  <->  0  = 
1 ) )
1615necon3bid 2494 . . . . . . 7  |-  ( ( 0  e.  CC  /\  1  e.  CC  /\  ( A ^ 2 )  e.  CC )  ->  (
( 0  -  ( A ^ 2 ) )  =/=  ( 1  -  ( A ^ 2 ) )  <->  0  =/=  1 ) )
1713, 14, 5, 16syl3anc 1182 . . . . . 6  |-  ( A  e.  CC  ->  (
( 0  -  ( A ^ 2 ) )  =/=  ( 1  -  ( A ^ 2 ) )  <->  0  =/=  1 ) )
1811, 17mpbiri 224 . . . . 5  |-  ( A  e.  CC  ->  (
0  -  ( A ^ 2 ) )  =/=  ( 1  -  ( A ^ 2 ) ) )
19 sqmul 11183 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( ( _i  x.  A ) ^ 2 )  =  ( ( _i ^ 2 )  x.  ( A ^
2 ) ) )
201, 19mpan 651 . . . . . . 7  |-  ( A  e.  CC  ->  (
( _i  x.  A
) ^ 2 )  =  ( ( _i
^ 2 )  x.  ( A ^ 2 ) ) )
21 i2 11219 . . . . . . . . 9  |-  ( _i
^ 2 )  = 
-u 1
2221oveq1i 5884 . . . . . . . 8  |-  ( ( _i ^ 2 )  x.  ( A ^
2 ) )  =  ( -u 1  x.  ( A ^ 2 ) )
235mulm1d 9247 . . . . . . . 8  |-  ( A  e.  CC  ->  ( -u 1  x.  ( A ^ 2 ) )  =  -u ( A ^
2 ) )
2422, 23syl5eq 2340 . . . . . . 7  |-  ( A  e.  CC  ->  (
( _i ^ 2 )  x.  ( A ^ 2 ) )  =  -u ( A ^
2 ) )
2520, 24eqtrd 2328 . . . . . 6  |-  ( A  e.  CC  ->  (
( _i  x.  A
) ^ 2 )  =  -u ( A ^
2 ) )
26 df-neg 9056 . . . . . 6  |-  -u ( A ^ 2 )  =  ( 0  -  ( A ^ 2 ) )
2725, 26syl6eq 2344 . . . . 5  |-  ( A  e.  CC  ->  (
( _i  x.  A
) ^ 2 )  =  ( 0  -  ( A ^ 2 ) ) )
28 sqneg 11180 . . . . . . 7  |-  ( ( sqr `  ( 1  -  ( A ^
2 ) ) )  e.  CC  ->  ( -u ( sqr `  (
1  -  ( A ^ 2 ) ) ) ^ 2 )  =  ( ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ^ 2 ) )
298, 28syl 15 . . . . . 6  |-  ( A  e.  CC  ->  ( -u ( sqr `  (
1  -  ( A ^ 2 ) ) ) ^ 2 )  =  ( ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ^ 2 ) )
307sqsqrd 11937 . . . . . 6  |-  ( A  e.  CC  ->  (
( sqr `  (
1  -  ( A ^ 2 ) ) ) ^ 2 )  =  ( 1  -  ( A ^ 2 ) ) )
3129, 30eqtrd 2328 . . . . 5  |-  ( A  e.  CC  ->  ( -u ( sqr `  (
1  -  ( A ^ 2 ) ) ) ^ 2 )  =  ( 1  -  ( A ^ 2 ) ) )
3218, 27, 313netr4d 2486 . . . 4  |-  ( A  e.  CC  ->  (
( _i  x.  A
) ^ 2 )  =/=  ( -u ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ^
2 ) )
33 oveq1 5881 . . . . 5  |-  ( ( _i  x.  A )  =  -u ( sqr `  (
1  -  ( A ^ 2 ) ) )  ->  ( (
_i  x.  A ) ^ 2 )  =  ( -u ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ^ 2 ) )
3433necon3i 2498 . . . 4  |-  ( ( ( _i  x.  A
) ^ 2 )  =/=  ( -u ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ^
2 )  ->  (
_i  x.  A )  =/=  -u ( sqr `  (
1  -  ( A ^ 2 ) ) ) )
3532, 34syl 15 . . 3  |-  ( A  e.  CC  ->  (
_i  x.  A )  =/=  -u ( sqr `  (
1  -  ( A ^ 2 ) ) ) )
368negcld 9160 . . . 4  |-  ( A  e.  CC  ->  -u ( sqr `  ( 1  -  ( A ^ 2 ) ) )  e.  CC )
37 subeq0 9089 . . . . 5  |-  ( ( ( _i  x.  A
)  e.  CC  /\  -u ( sqr `  (
1  -  ( A ^ 2 ) ) )  e.  CC )  ->  ( ( ( _i  x.  A )  -  -u ( sqr `  (
1  -  ( A ^ 2 ) ) ) )  =  0  <-> 
( _i  x.  A
)  =  -u ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) )
3837necon3bid 2494 . . . 4  |-  ( ( ( _i  x.  A
)  e.  CC  /\  -u ( sqr `  (
1  -  ( A ^ 2 ) ) )  e.  CC )  ->  ( ( ( _i  x.  A )  -  -u ( sqr `  (
1  -  ( A ^ 2 ) ) ) )  =/=  0  <->  ( _i  x.  A )  =/=  -u ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) )
393, 36, 38syl2anc 642 . . 3  |-  ( A  e.  CC  ->  (
( ( _i  x.  A )  -  -u ( sqr `  ( 1  -  ( A ^ 2 ) ) ) )  =/=  0  <->  ( _i  x.  A )  =/=  -u ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) )
4035, 39mpbird 223 . 2  |-  ( A  e.  CC  ->  (
( _i  x.  A
)  -  -u ( sqr `  ( 1  -  ( A ^ 2 ) ) ) )  =/=  0 )
419, 40eqnetrrd 2479 1  |-  ( A  e.  CC  ->  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) )  =/=  0
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   ` cfv 5271  (class class class)co 5874   CCcc 8751   0cc0 8753   1c1 8754   _ici 8755    + caddc 8756    x. cmul 8758    - cmin 9053   -ucneg 9054   2c2 9811   ^cexp 11120   sqrcsqr 11734
This theorem is referenced by:  asinlem3  20183  asinf  20184  asinneg  20198  efiasin  20200  asinbnd  20211  dvreasin  25026
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737
  Copyright terms: Public domain W3C validator