MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinneg Unicode version

Theorem asinneg 20687
Description: The arcsine function is odd. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
asinneg  |-  ( A  e.  CC  ->  (arcsin `  -u A )  =  -u (arcsin `  A ) )

Proof of Theorem asinneg
StepHypRef Expression
1 ax-icn 9013 . . . . . . . . . 10  |-  _i  e.  CC
2 mulcl 9038 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
31, 2mpan 652 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
_i  x.  A )  e.  CC )
4 ax-1cn 9012 . . . . . . . . . . 11  |-  1  e.  CC
5 sqcl 11407 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  ( A ^ 2 )  e.  CC )
6 subcl 9269 . . . . . . . . . . 11  |-  ( ( 1  e.  CC  /\  ( A ^ 2 )  e.  CC )  -> 
( 1  -  ( A ^ 2 ) )  e.  CC )
74, 5, 6sylancr 645 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
1  -  ( A ^ 2 ) )  e.  CC )
87sqrcld 12202 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( sqr `  ( 1  -  ( A ^ 2 ) ) )  e.  CC )
93, 8addcld 9071 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) )  e.  CC )
10 asinlem 20669 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) )  =/=  0
)
119, 10logcld 20429 . . . . . . 7  |-  ( A  e.  CC  ->  ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) )  e.  CC )
12 efneg 12662 . . . . . . 7  |-  ( ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) )  e.  CC  ->  ( exp `  -u ( log `  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) ) )  =  ( 1  / 
( exp `  ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) ) ) ) )
1311, 12syl 16 . . . . . 6  |-  ( A  e.  CC  ->  ( exp `  -u ( log `  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) ) )  =  ( 1  / 
( exp `  ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) ) ) ) )
14 eflog 20435 . . . . . . . 8  |-  ( ( ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) )  e.  CC  /\  ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) )  =/=  0 )  ->  ( exp `  ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) ) )  =  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) )
159, 10, 14syl2anc 643 . . . . . . 7  |-  ( A  e.  CC  ->  ( exp `  ( log `  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) ) )  =  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) )
1615oveq2d 6064 . . . . . 6  |-  ( A  e.  CC  ->  (
1  /  ( exp `  ( log `  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) ) ) )  =  ( 1  /  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) ) )
17 asinlem2 20670 . . . . . . 7  |-  ( A  e.  CC  ->  (
( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) )  x.  ( ( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) )  =  1 )
184a1i 11 . . . . . . . 8  |-  ( A  e.  CC  ->  1  e.  CC )
19 negcl 9270 . . . . . . . . . 10  |-  ( A  e.  CC  ->  -u A  e.  CC )
20 mulcl 9038 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  -u A  e.  CC )  ->  ( _i  x.  -u A )  e.  CC )
211, 19, 20sylancr 645 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
_i  x.  -u A )  e.  CC )
2219sqcld 11484 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  ( -u A ^ 2 )  e.  CC )
23 subcl 9269 . . . . . . . . . . 11  |-  ( ( 1  e.  CC  /\  ( -u A ^ 2 )  e.  CC )  ->  ( 1  -  ( -u A ^
2 ) )  e.  CC )
244, 22, 23sylancr 645 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
1  -  ( -u A ^ 2 ) )  e.  CC )
2524sqrcld 12202 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( sqr `  ( 1  -  ( -u A ^
2 ) ) )  e.  CC )
2621, 25addcld 9071 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) )  e.  CC )
2718, 9, 26, 10divmuld 9776 . . . . . . 7  |-  ( A  e.  CC  ->  (
( 1  /  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) )  =  ( ( _i  x.  -u A )  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) )  <->  ( (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) )  x.  (
( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) )  =  1 ) )
2817, 27mpbird 224 . . . . . 6  |-  ( A  e.  CC  ->  (
1  /  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) )  =  ( ( _i  x.  -u A )  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) )
2913, 16, 283eqtrd 2448 . . . . 5  |-  ( A  e.  CC  ->  ( exp `  -u ( log `  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) ) )  =  ( ( _i  x.  -u A )  +  ( sqr `  (
1  -  ( -u A ^ 2 ) ) ) ) )
30 asinlem 20669 . . . . . . 7  |-  ( -u A  e.  CC  ->  ( ( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) )  =/=  0 )
3119, 30syl 16 . . . . . 6  |-  ( A  e.  CC  ->  (
( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) )  =/=  0 )
3211negcld 9362 . . . . . . . 8  |-  ( A  e.  CC  ->  -u ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) )  e.  CC )
3311imnegd 11978 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
Im `  -u ( log `  ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) ) ) )  = 
-u ( Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) ) ) )
3411imcld 11963 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) ) ) )  e.  RR )
3534renegcld 9428 . . . . . . . . . 10  |-  ( A  e.  CC  ->  -u (
Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) ) ) )  e.  RR )
369renegd 11977 . . . . . . . . . . . . . . . 16  |-  ( A  e.  CC  ->  (
Re `  -u ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) )  = 
-u ( Re `  ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) ) ) )
37 asinlem3 20672 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  CC  ->  0  <_  ( Re `  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) ) )
389recld 11962 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  CC  ->  (
Re `  ( (
_i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) )  e.  RR )
3938le0neg2d 9563 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  CC  ->  (
0  <_  ( Re `  ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) ) )  <->  -u ( Re
`  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) )  <_ 
0 ) )
4037, 39mpbid 202 . . . . . . . . . . . . . . . 16  |-  ( A  e.  CC  ->  -u (
Re `  ( (
_i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) )  <_ 
0 )
4136, 40eqbrtrd 4200 . . . . . . . . . . . . . . 15  |-  ( A  e.  CC  ->  (
Re `  -u ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) )  <_ 
0 )
429negcld 9362 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  CC  ->  -u (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) )  e.  CC )
4342recld 11962 . . . . . . . . . . . . . . . 16  |-  ( A  e.  CC  ->  (
Re `  -u ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) )  e.  RR )
44 0re 9055 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
45 lenlt 9118 . . . . . . . . . . . . . . . 16  |-  ( ( ( Re `  -u (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) )  e.  RR  /\  0  e.  RR )  ->  (
( Re `  -u (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) )  <_ 
0  <->  -.  0  <  ( Re `  -u (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) ) ) )
4643, 44, 45sylancl 644 . . . . . . . . . . . . . . 15  |-  ( A  e.  CC  ->  (
( Re `  -u (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) )  <_ 
0  <->  -.  0  <  ( Re `  -u (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) ) ) )
4741, 46mpbid 202 . . . . . . . . . . . . . 14  |-  ( A  e.  CC  ->  -.  0  <  ( Re `  -u ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) ) ) )
48 lognegb 20445 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) )  e.  CC  /\  ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) )  =/=  0 )  ->  ( -u (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) )  e.  RR+  <->  (
Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) ) ) )  =  pi ) )
499, 10, 48syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( A  e.  CC  ->  ( -u ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) )  e.  RR+  <->  ( Im `  ( log `  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) ) )  =  pi ) )
50 rpgt0 10587 . . . . . . . . . . . . . . . . 17  |-  ( -u ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) )  e.  RR+  ->  0  <  -u ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) )
51 rpre 10582 . . . . . . . . . . . . . . . . . 18  |-  ( -u ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) )  e.  RR+  ->  -u ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) )  e.  RR )
5251rered 11992 . . . . . . . . . . . . . . . . 17  |-  ( -u ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) )  e.  RR+  ->  ( Re `  -u (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) )  = 
-u ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) )
5350, 52breqtrrd 4206 . . . . . . . . . . . . . . . 16  |-  ( -u ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) )  e.  RR+  ->  0  <  ( Re `  -u ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) ) ) )
5449, 53syl6bir 221 . . . . . . . . . . . . . . 15  |-  ( A  e.  CC  ->  (
( Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) ) )  =  pi  ->  0  <  ( Re `  -u (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) ) ) )
5554necon3bd 2612 . . . . . . . . . . . . . 14  |-  ( A  e.  CC  ->  ( -.  0  <  ( Re
`  -u ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) )  -> 
( Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) ) )  =/=  pi ) )
5647, 55mpd 15 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  (
Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) ) ) )  =/= 
pi )
5756necomd 2658 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  pi  =/=  ( Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) ) ) )
58 pire 20333 . . . . . . . . . . . . . 14  |-  pi  e.  RR
5958a1i 11 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  pi  e.  RR )
609, 10logimcld 20430 . . . . . . . . . . . . . 14  |-  ( A  e.  CC  ->  ( -u pi  <  ( Im
`  ( log `  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) ) )  /\  ( Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) ) )  <_  pi ) )
6160simprd 450 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  (
Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) ) ) )  <_  pi )
6234, 59, 61leltned 9188 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  (
( Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) ) )  <  pi  <->  pi  =/=  ( Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) ) ) ) ) )
6357, 62mpbird 224 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) ) ) )  < 
pi )
64 ltneg 9492 . . . . . . . . . . . 12  |-  ( ( ( Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) ) )  e.  RR  /\  pi  e.  RR )  ->  (
( Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) ) )  <  pi  <->  -u pi  <  -u ( Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) ) ) ) )
6534, 58, 64sylancl 644 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
( Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) ) )  <  pi  <->  -u pi  <  -u ( Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) ) ) ) )
6663, 65mpbid 202 . . . . . . . . . 10  |-  ( A  e.  CC  ->  -u pi  <  -u ( Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) ) ) )
6760simpld 446 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  -u pi  <  ( Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) ) ) )
6858renegcli 9326 . . . . . . . . . . . . 13  |-  -u pi  e.  RR
69 ltle 9127 . . . . . . . . . . . . 13  |-  ( (
-u pi  e.  RR  /\  ( Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) ) )  e.  RR )  -> 
( -u pi  <  (
Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) ) ) )  ->  -u pi  <_  ( Im `  ( log `  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) ) ) ) )
7068, 34, 69sylancr 645 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  ( -u pi  <  ( Im
`  ( log `  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) ) )  ->  -u pi  <_  (
Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) ) ) ) ) )
7167, 70mpd 15 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  -u pi  <_  ( Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) ) ) )
72 lenegcon1 9496 . . . . . . . . . . . 12  |-  ( ( pi  e.  RR  /\  ( Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) ) ) )  e.  RR )  ->  ( -u pi  <_  ( Im `  ( log `  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) ) )  <->  -u ( Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) ) )  <_  pi ) )
7358, 34, 72sylancr 645 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  ( -u pi  <_  ( Im `  ( log `  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) ) )  <->  -u ( Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) ) )  <_  pi ) )
7471, 73mpbid 202 . . . . . . . . . 10  |-  ( A  e.  CC  ->  -u (
Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) ) ) )  <_  pi )
7568rexri 9101 . . . . . . . . . . 11  |-  -u pi  e.  RR*
76 elioc2 10937 . . . . . . . . . . 11  |-  ( (
-u pi  e.  RR*  /\  pi  e.  RR )  ->  ( -u (
Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) ) ) )  e.  ( -u pi (,] pi )  <->  ( -u (
Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) ) ) )  e.  RR  /\  -u pi  <  -u ( Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) ) )  /\  -u ( Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) ) )  <_  pi ) ) )
7775, 58, 76mp2an 654 . . . . . . . . . 10  |-  ( -u ( Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) ) ) )  e.  ( -u pi (,] pi )  <->  ( -u (
Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) ) ) )  e.  RR  /\  -u pi  <  -u ( Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) ) )  /\  -u ( Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) ) )  <_  pi ) )
7835, 66, 74, 77syl3anbrc 1138 . . . . . . . . 9  |-  ( A  e.  CC  ->  -u (
Im `  ( log `  ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) ) ) )  e.  ( -u pi (,] pi ) )
7933, 78eqeltrd 2486 . . . . . . . 8  |-  ( A  e.  CC  ->  (
Im `  -u ( log `  ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) ) ) )  e.  ( -u pi (,] pi ) )
80 imf 11881 . . . . . . . . 9  |-  Im : CC
--> RR
81 ffn 5558 . . . . . . . . 9  |-  ( Im : CC --> RR  ->  Im  Fn  CC )
82 elpreima 5817 . . . . . . . . 9  |-  ( Im  Fn  CC  ->  ( -u ( log `  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) )  e.  ( `' Im "
( -u pi (,] pi ) )  <->  ( -u ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) )  e.  CC  /\  ( Im
`  -u ( log `  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) ) )  e.  ( -u pi (,] pi ) ) ) )
8380, 81, 82mp2b 10 . . . . . . . 8  |-  ( -u ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) )  e.  ( `' Im "
( -u pi (,] pi ) )  <->  ( -u ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) )  e.  CC  /\  ( Im
`  -u ( log `  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) ) )  e.  ( -u pi (,] pi ) ) )
8432, 79, 83sylanbrc 646 . . . . . . 7  |-  ( A  e.  CC  ->  -u ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) )  e.  ( `' Im "
( -u pi (,] pi ) ) )
85 logrn 20417 . . . . . . 7  |-  ran  log  =  ( `' Im " ( -u pi (,] pi ) )
8684, 85syl6eleqr 2503 . . . . . 6  |-  ( A  e.  CC  ->  -u ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) )  e. 
ran  log )
87 logeftb 20439 . . . . . 6  |-  ( ( ( ( _i  x.  -u A )  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) )  e.  CC  /\  ( ( _i  x.  -u A )  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) )  =/=  0  /\  -u ( log `  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) )  e. 
ran  log )  ->  (
( log `  (
( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) )  =  -u ( log `  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) )  <->  ( exp `  -u ( log `  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) ) )  =  ( ( _i  x.  -u A )  +  ( sqr `  (
1  -  ( -u A ^ 2 ) ) ) ) ) )
8826, 31, 86, 87syl3anc 1184 . . . . 5  |-  ( A  e.  CC  ->  (
( log `  (
( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) )  =  -u ( log `  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) )  <->  ( exp `  -u ( log `  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) ) )  =  ( ( _i  x.  -u A )  +  ( sqr `  (
1  -  ( -u A ^ 2 ) ) ) ) ) )
8929, 88mpbird 224 . . . 4  |-  ( A  e.  CC  ->  ( log `  ( ( _i  x.  -u A )  +  ( sqr `  (
1  -  ( -u A ^ 2 ) ) ) ) )  = 
-u ( log `  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) ) )
9089oveq2d 6064 . . 3  |-  ( A  e.  CC  ->  ( -u _i  x.  ( log `  ( ( _i  x.  -u A )  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) ) )  =  ( -u _i  x.  -u ( log `  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) ) ) )
911negcli 9332 . . . 4  |-  -u _i  e.  CC
92 mulneg2 9435 . . . 4  |-  ( (
-u _i  e.  CC  /\  ( log `  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) )  e.  CC )  ->  ( -u _i  x.  -u ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) ) )  =  -u ( -u _i  x.  ( log `  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) ) ) )
9391, 11, 92sylancr 645 . . 3  |-  ( A  e.  CC  ->  ( -u _i  x.  -u ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) ) )  =  -u ( -u _i  x.  ( log `  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) ) ) )
9490, 93eqtrd 2444 . 2  |-  ( A  e.  CC  ->  ( -u _i  x.  ( log `  ( ( _i  x.  -u A )  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) ) )  =  -u ( -u _i  x.  ( log `  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) ) ) )
95 asinval 20683 . . 3  |-  ( -u A  e.  CC  ->  (arcsin `  -u A )  =  ( -u _i  x.  ( log `  ( ( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) ) ) )
9619, 95syl 16 . 2  |-  ( A  e.  CC  ->  (arcsin `  -u A )  =  (
-u _i  x.  ( log `  ( ( _i  x.  -u A )  +  ( sqr `  (
1  -  ( -u A ^ 2 ) ) ) ) ) ) )
97 asinval 20683 . . 3  |-  ( A  e.  CC  ->  (arcsin `  A )  =  (
-u _i  x.  ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) ) ) )
9897negeqd 9264 . 2  |-  ( A  e.  CC  ->  -u (arcsin `  A )  =  -u ( -u _i  x.  ( log `  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) ) ) )
9994, 96, 983eqtr4d 2454 1  |-  ( A  e.  CC  ->  (arcsin `  -u A )  =  -u (arcsin `  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2575   class class class wbr 4180   `'ccnv 4844   ran crn 4846   "cima 4848    Fn wfn 5416   -->wf 5417   ` cfv 5421  (class class class)co 6048   CCcc 8952   RRcr 8953   0cc0 8954   1c1 8955   _ici 8956    + caddc 8957    x. cmul 8959   RR*cxr 9083    < clt 9084    <_ cle 9085    - cmin 9255   -ucneg 9256    / cdiv 9641   2c2 10013   RR+crp 10576   (,]cioc 10881   ^cexp 11345   Recre 11865   Imcim 11866   sqrcsqr 12001   expce 12627   picpi 12632   logclog 20413  arcsincasin 20663
This theorem is referenced by:  acosneg  20688  sinasin  20690  reasinsin  20697  cosasin  20705  areacirc  26195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-inf2 7560  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031  ax-pre-sup 9032  ax-addf 9033  ax-mulf 9034
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-iin 4064  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-se 4510  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-of 6272  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-1o 6691  df-2o 6692  df-oadd 6695  df-er 6872  df-map 6987  df-pm 6988  df-ixp 7031  df-en 7077  df-dom 7078  df-sdom 7079  df-fin 7080  df-fi 7382  df-sup 7412  df-oi 7443  df-card 7790  df-cda 8012  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-div 9642  df-nn 9965  df-2 10022  df-3 10023  df-4 10024  df-5 10025  df-6 10026  df-7 10027  df-8 10028  df-9 10029  df-10 10030  df-n0 10186  df-z 10247  df-dec 10347  df-uz 10453  df-q 10539  df-rp 10577  df-xneg 10674  df-xadd 10675  df-xmul 10676  df-ioo 10884  df-ioc 10885  df-ico 10886  df-icc 10887  df-fz 11008  df-fzo 11099  df-fl 11165  df-mod 11214  df-seq 11287  df-exp 11346  df-fac 11530  df-bc 11557  df-hash 11582  df-shft 11845  df-cj 11867  df-re 11868  df-im 11869  df-sqr 12003  df-abs 12004  df-limsup 12228  df-clim 12245  df-rlim 12246  df-sum 12443  df-ef 12633  df-sin 12635  df-cos 12636  df-pi 12638  df-struct 13434  df-ndx 13435  df-slot 13436  df-base 13437  df-sets 13438  df-ress 13439  df-plusg 13505  df-mulr 13506  df-starv 13507  df-sca 13508  df-vsca 13509  df-tset 13511  df-ple 13512  df-ds 13514  df-unif 13515  df-hom 13516  df-cco 13517  df-rest 13613  df-topn 13614  df-topgen 13630  df-pt 13631  df-prds 13634  df-xrs 13689  df-0g 13690  df-gsum 13691  df-qtop 13696  df-imas 13697  df-xps 13699  df-mre 13774  df-mrc 13775  df-acs 13777  df-mnd 14653  df-submnd 14702  df-mulg 14778  df-cntz 15079  df-cmn 15377  df-psmet 16657  df-xmet 16658  df-met 16659  df-bl 16660  df-mopn 16661  df-fbas 16662  df-fg 16663  df-cnfld 16667  df-top 16926  df-bases 16928  df-topon 16929  df-topsp 16930  df-cld 17046  df-ntr 17047  df-cls 17048  df-nei 17125  df-lp 17163  df-perf 17164  df-cn 17253  df-cnp 17254  df-haus 17341  df-tx 17555  df-hmeo 17748  df-fil 17839  df-fm 17931  df-flim 17932  df-flf 17933  df-xms 18311  df-ms 18312  df-tms 18313  df-cncf 18869  df-limc 19714  df-dv 19715  df-log 20415  df-asin 20666
  Copyright terms: Public domain W3C validator