MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinsin Unicode version

Theorem asinsin 20720
Description: The arcsine function composed with  sin is equal to the identity. This plus sinasin 20717 allow us to view  sin and arcsin as inverse operations to each other. For ease of use, we have not defined precisely the correct domain of correctness of this identity; in addition to the main region described here it is also true for some points on the branch cuts, namely when  A  =  ( pi 
/  2 )  -  _i y for non-negative real  y and also symmetrically at  A  =  _i y  -  ( pi  / 
2 ). In particular, when restricted to reals this identity extends to the closed interval  [ -u (
pi  /  2 ) ,  ( pi  / 
2 ) ], not just the open interval (see reasinsin 20724). (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
asinsin  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  (arcsin `  ( sin `  A ) )  =  A )

Proof of Theorem asinsin
StepHypRef Expression
1 sincl 12715 . . . 4  |-  ( A  e.  CC  ->  ( sin `  A )  e.  CC )
21adantr 452 . . 3  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( sin `  A
)  e.  CC )
3 asinval 20710 . . 3  |-  ( ( sin `  A )  e.  CC  ->  (arcsin `  ( sin `  A
) )  =  (
-u _i  x.  ( log `  ( ( _i  x.  ( sin `  A
) )  +  ( sqr `  ( 1  -  ( ( sin `  A ) ^ 2 ) ) ) ) ) ) )
42, 3syl 16 . 2  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  (arcsin `  ( sin `  A ) )  =  ( -u _i  x.  ( log `  ( ( _i  x.  ( sin `  A ) )  +  ( sqr `  (
1  -  ( ( sin `  A ) ^ 2 ) ) ) ) ) ) )
5 ax-icn 9038 . . . . . . . 8  |-  _i  e.  CC
6 mulcl 9063 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  ( sin `  A )  e.  CC )  -> 
( _i  x.  ( sin `  A ) )  e.  CC )
75, 2, 6sylancr 645 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( _i  x.  ( sin `  A ) )  e.  CC )
8 simpl 444 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  A  e.  CC )
9 mulcl 9063 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
105, 8, 9sylancr 645 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( _i  x.  A )  e.  CC )
11 efcl 12673 . . . . . . . 8  |-  ( ( _i  x.  A )  e.  CC  ->  ( exp `  ( _i  x.  A ) )  e.  CC )
1210, 11syl 16 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( exp `  (
_i  x.  A )
)  e.  CC )
137, 12pncan3d 9403 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( _i  x.  ( sin `  A
) )  +  ( ( exp `  (
_i  x.  A )
)  -  ( _i  x.  ( sin `  A
) ) ) )  =  ( exp `  (
_i  x.  A )
) )
1412, 7subcld 9400 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( exp `  ( _i  x.  A
) )  -  (
_i  x.  ( sin `  A ) ) )  e.  CC )
15 ax-1cn 9037 . . . . . . . . 9  |-  1  e.  CC
162sqcld 11509 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( sin `  A ) ^ 2 )  e.  CC )
17 subcl 9294 . . . . . . . . 9  |-  ( ( 1  e.  CC  /\  ( ( sin `  A
) ^ 2 )  e.  CC )  -> 
( 1  -  (
( sin `  A
) ^ 2 ) )  e.  CC )
1815, 16, 17sylancr 645 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( 1  -  ( ( sin `  A
) ^ 2 ) )  e.  CC )
19 binom2sub 11486 . . . . . . . . . 10  |-  ( ( ( exp `  (
_i  x.  A )
)  e.  CC  /\  ( _i  x.  ( sin `  A ) )  e.  CC )  -> 
( ( ( exp `  ( _i  x.  A
) )  -  (
_i  x.  ( sin `  A ) ) ) ^ 2 )  =  ( ( ( ( exp `  ( _i  x.  A ) ) ^ 2 )  -  ( 2  x.  (
( exp `  (
_i  x.  A )
)  x.  ( _i  x.  ( sin `  A
) ) ) ) )  +  ( ( _i  x.  ( sin `  A ) ) ^
2 ) ) )
2012, 7, 19syl2anc 643 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( ( exp `  ( _i  x.  A ) )  -  ( _i  x.  ( sin `  A ) ) ) ^ 2 )  =  ( ( ( ( exp `  (
_i  x.  A )
) ^ 2 )  -  ( 2  x.  ( ( exp `  (
_i  x.  A )
)  x.  ( _i  x.  ( sin `  A
) ) ) ) )  +  ( ( _i  x.  ( sin `  A ) ) ^
2 ) ) )
2112sqvald 11508 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( exp `  ( _i  x.  A
) ) ^ 2 )  =  ( ( exp `  ( _i  x.  A ) )  x.  ( exp `  (
_i  x.  A )
) ) )
22 2cn 10059 . . . . . . . . . . . . . 14  |-  2  e.  CC
2322a1i 11 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  2  e.  CC )
2423, 12, 7mul12d 9264 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( 2  x.  ( ( exp `  (
_i  x.  A )
)  x.  ( _i  x.  ( sin `  A
) ) ) )  =  ( ( exp `  ( _i  x.  A
) )  x.  (
2  x.  ( _i  x.  ( sin `  A
) ) ) ) )
2521, 24oveq12d 6090 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( ( exp `  ( _i  x.  A ) ) ^ 2 )  -  ( 2  x.  (
( exp `  (
_i  x.  A )
)  x.  ( _i  x.  ( sin `  A
) ) ) ) )  =  ( ( ( exp `  (
_i  x.  A )
)  x.  ( exp `  ( _i  x.  A
) ) )  -  ( ( exp `  (
_i  x.  A )
)  x.  ( 2  x.  ( _i  x.  ( sin `  A ) ) ) ) ) )
26 coscl 12716 . . . . . . . . . . . . . 14  |-  ( A  e.  CC  ->  ( cos `  A )  e.  CC )
2726adantr 452 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( cos `  A
)  e.  CC )
28 subsq 11476 . . . . . . . . . . . . 13  |-  ( ( ( cos `  A
)  e.  CC  /\  ( _i  x.  ( sin `  A ) )  e.  CC )  -> 
( ( ( cos `  A ) ^ 2 )  -  ( ( _i  x.  ( sin `  A ) ) ^
2 ) )  =  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) )  x.  ( ( cos `  A )  -  (
_i  x.  ( sin `  A ) ) ) ) )
2927, 7, 28syl2anc 643 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( ( cos `  A ) ^ 2 )  -  ( ( _i  x.  ( sin `  A ) ) ^ 2 ) )  =  ( ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) )  x.  ( ( cos `  A
)  -  ( _i  x.  ( sin `  A
) ) ) ) )
30 sqmul 11433 . . . . . . . . . . . . . . . 16  |-  ( ( _i  e.  CC  /\  ( sin `  A )  e.  CC )  -> 
( ( _i  x.  ( sin `  A ) ) ^ 2 )  =  ( ( _i
^ 2 )  x.  ( ( sin `  A
) ^ 2 ) ) )
315, 2, 30sylancr 645 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( _i  x.  ( sin `  A
) ) ^ 2 )  =  ( ( _i ^ 2 )  x.  ( ( sin `  A ) ^ 2 ) ) )
32 i2 11469 . . . . . . . . . . . . . . . . 17  |-  ( _i
^ 2 )  = 
-u 1
3332oveq1i 6082 . . . . . . . . . . . . . . . 16  |-  ( ( _i ^ 2 )  x.  ( ( sin `  A ) ^ 2 ) )  =  (
-u 1  x.  (
( sin `  A
) ^ 2 ) )
3416mulm1d 9474 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( -u 1  x.  ( ( sin `  A
) ^ 2 ) )  =  -u (
( sin `  A
) ^ 2 ) )
3533, 34syl5eq 2479 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( _i
^ 2 )  x.  ( ( sin `  A
) ^ 2 ) )  =  -u (
( sin `  A
) ^ 2 ) )
3631, 35eqtrd 2467 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( _i  x.  ( sin `  A
) ) ^ 2 )  =  -u (
( sin `  A
) ^ 2 ) )
3736oveq2d 6088 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( ( cos `  A ) ^ 2 )  -  ( ( _i  x.  ( sin `  A ) ) ^ 2 ) )  =  ( ( ( cos `  A
) ^ 2 )  -  -u ( ( sin `  A ) ^ 2 ) ) )
3827sqcld 11509 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( cos `  A ) ^ 2 )  e.  CC )
3938, 16subnegd 9407 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( ( cos `  A ) ^ 2 )  -  -u ( ( sin `  A
) ^ 2 ) )  =  ( ( ( cos `  A
) ^ 2 )  +  ( ( sin `  A ) ^ 2 ) ) )
4038, 16addcomd 9257 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( ( cos `  A ) ^ 2 )  +  ( ( sin `  A
) ^ 2 ) )  =  ( ( ( sin `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) ) )
4137, 39, 403eqtrd 2471 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( ( cos `  A ) ^ 2 )  -  ( ( _i  x.  ( sin `  A ) ) ^ 2 ) )  =  ( ( ( sin `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) ) )
42 efival 12741 . . . . . . . . . . . . . . 15  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) )
4342adantr 452 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( exp `  (
_i  x.  A )
)  =  ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) )
4472timesd 10199 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( 2  x.  ( _i  x.  ( sin `  A ) ) )  =  ( ( _i  x.  ( sin `  A ) )  +  ( _i  x.  ( sin `  A ) ) ) )
4543, 44oveq12d 6090 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( exp `  ( _i  x.  A
) )  -  (
2  x.  ( _i  x.  ( sin `  A
) ) ) )  =  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) )  -  (
( _i  x.  ( sin `  A ) )  +  ( _i  x.  ( sin `  A ) ) ) ) )
4627, 7, 7pnpcan2d 9438 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) )  -  (
( _i  x.  ( sin `  A ) )  +  ( _i  x.  ( sin `  A ) ) ) )  =  ( ( cos `  A
)  -  ( _i  x.  ( sin `  A
) ) ) )
4745, 46eqtrd 2467 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( exp `  ( _i  x.  A
) )  -  (
2  x.  ( _i  x.  ( sin `  A
) ) ) )  =  ( ( cos `  A )  -  (
_i  x.  ( sin `  A ) ) ) )
4843, 47oveq12d 6090 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( exp `  ( _i  x.  A
) )  x.  (
( exp `  (
_i  x.  A )
)  -  ( 2  x.  ( _i  x.  ( sin `  A ) ) ) ) )  =  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) )  x.  (
( cos `  A
)  -  ( _i  x.  ( sin `  A
) ) ) ) )
49 mulcl 9063 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  CC  /\  ( _i  x.  ( sin `  A ) )  e.  CC )  -> 
( 2  x.  (
_i  x.  ( sin `  A ) ) )  e.  CC )
5022, 7, 49sylancr 645 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( 2  x.  ( _i  x.  ( sin `  A ) ) )  e.  CC )
5112, 12, 50subdid 9478 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( exp `  ( _i  x.  A
) )  x.  (
( exp `  (
_i  x.  A )
)  -  ( 2  x.  ( _i  x.  ( sin `  A ) ) ) ) )  =  ( ( ( exp `  ( _i  x.  A ) )  x.  ( exp `  (
_i  x.  A )
) )  -  (
( exp `  (
_i  x.  A )
)  x.  ( 2  x.  ( _i  x.  ( sin `  A ) ) ) ) ) )
5248, 51eqtr3d 2469 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) )  x.  (
( cos `  A
)  -  ( _i  x.  ( sin `  A
) ) ) )  =  ( ( ( exp `  ( _i  x.  A ) )  x.  ( exp `  (
_i  x.  A )
) )  -  (
( exp `  (
_i  x.  A )
)  x.  ( 2  x.  ( _i  x.  ( sin `  A ) ) ) ) ) )
5329, 41, 523eqtr3d 2475 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( ( sin `  A ) ^ 2 )  +  ( ( cos `  A
) ^ 2 ) )  =  ( ( ( exp `  (
_i  x.  A )
)  x.  ( exp `  ( _i  x.  A
) ) )  -  ( ( exp `  (
_i  x.  A )
)  x.  ( 2  x.  ( _i  x.  ( sin `  A ) ) ) ) ) )
54 sincossq 12765 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  (
( ( sin `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  =  1 )
5554adantr 452 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( ( sin `  A ) ^ 2 )  +  ( ( cos `  A
) ^ 2 ) )  =  1 )
5625, 53, 553eqtr2d 2473 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( ( exp `  ( _i  x.  A ) ) ^ 2 )  -  ( 2  x.  (
( exp `  (
_i  x.  A )
)  x.  ( _i  x.  ( sin `  A
) ) ) ) )  =  1 )
5756, 36oveq12d 6090 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( ( ( exp `  (
_i  x.  A )
) ^ 2 )  -  ( 2  x.  ( ( exp `  (
_i  x.  A )
)  x.  ( _i  x.  ( sin `  A
) ) ) ) )  +  ( ( _i  x.  ( sin `  A ) ) ^
2 ) )  =  ( 1  +  -u ( ( sin `  A
) ^ 2 ) ) )
58 negsub 9338 . . . . . . . . . 10  |-  ( ( 1  e.  CC  /\  ( ( sin `  A
) ^ 2 )  e.  CC )  -> 
( 1  +  -u ( ( sin `  A
) ^ 2 ) )  =  ( 1  -  ( ( sin `  A ) ^ 2 ) ) )
5915, 16, 58sylancr 645 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( 1  + 
-u ( ( sin `  A ) ^ 2 ) )  =  ( 1  -  ( ( sin `  A ) ^ 2 ) ) )
6020, 57, 593eqtrd 2471 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( ( exp `  ( _i  x.  A ) )  -  ( _i  x.  ( sin `  A ) ) ) ^ 2 )  =  ( 1  -  ( ( sin `  A ) ^ 2 ) ) )
61 1re 9079 . . . . . . . . . . . . 13  |-  1  e.  RR
6261rehalfcli 10205 . . . . . . . . . . . 12  |-  ( 1  /  2 )  e.  RR
6362a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( 1  / 
2 )  e.  RR )
645negcli 9357 . . . . . . . . . . . . . . 15  |-  -u _i  e.  CC
65 mulcl 9063 . . . . . . . . . . . . . . 15  |-  ( (
-u _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  e.  CC )
6664, 8, 65sylancr 645 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( -u _i  x.  A )  e.  CC )
67 efcl 12673 . . . . . . . . . . . . . 14  |-  ( (
-u _i  x.  A
)  e.  CC  ->  ( exp `  ( -u _i  x.  A ) )  e.  CC )
6866, 67syl 16 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( exp `  ( -u _i  x.  A ) )  e.  CC )
6912, 68addcld 9096 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )
7069recld 11987 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( Re `  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) )  e.  RR )
71 halfgt0 10177 . . . . . . . . . . . 12  |-  0  <  ( 1  /  2
)
7271a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  0  <  (
1  /  2 ) )
7312recld 11987 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( Re `  ( exp `  ( _i  x.  A ) ) )  e.  RR )
7468recld 11987 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( Re `  ( exp `  ( -u _i  x.  A ) ) )  e.  RR )
75 asinsinlem 20719 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  0  <  (
Re `  ( exp `  ( _i  x.  A
) ) ) )
76 negcl 9295 . . . . . . . . . . . . . . . 16  |-  ( A  e.  CC  ->  -u A  e.  CC )
7776adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  -u A  e.  CC )
78 reneg 11918 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  CC  ->  (
Re `  -u A )  =  -u ( Re `  A ) )
7978adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( Re `  -u A )  =  -u ( Re `  A ) )
80 recl 11903 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
81 pire 20360 . . . . . . . . . . . . . . . . . . . . . 22  |-  pi  e.  RR
8281rehalfcli 10205 . . . . . . . . . . . . . . . . . . . . 21  |-  ( pi 
/  2 )  e.  RR
8382renegcli 9351 . . . . . . . . . . . . . . . . . . . 20  |-  -u (
pi  /  2 )  e.  RR
84 iooneg 11006 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
-u ( pi  / 
2 )  e.  RR  /\  ( pi  /  2
)  e.  RR  /\  ( Re `  A )  e.  RR )  -> 
( ( Re `  A )  e.  (
-u ( pi  / 
2 ) (,) (
pi  /  2 ) )  <->  -u ( Re `  A )  e.  (
-u ( pi  / 
2 ) (,) -u -u (
pi  /  2 ) ) ) )
8583, 82, 84mp3an12 1269 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Re `  A )  e.  RR  ->  (
( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  <->  -u ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) -u -u (
pi  /  2 ) ) ) )
8680, 85syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  CC  ->  (
( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  <->  -u ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) -u -u (
pi  /  2 ) ) ) )
8786biimpa 471 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  -u ( Re `  A )  e.  (
-u ( pi  / 
2 ) (,) -u -u (
pi  /  2 ) ) )
8882recni 9091 . . . . . . . . . . . . . . . . . . 19  |-  ( pi 
/  2 )  e.  CC
8988negnegi 9359 . . . . . . . . . . . . . . . . . 18  |-  -u -u (
pi  /  2 )  =  ( pi  / 
2 )
9089oveq2i 6083 . . . . . . . . . . . . . . . . 17  |-  ( -u ( pi  /  2
) (,) -u -u (
pi  /  2 ) )  =  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )
9187, 90syl6eleq 2525 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  -u ( Re `  A )  e.  (
-u ( pi  / 
2 ) (,) (
pi  /  2 ) ) )
9279, 91eqeltrd 2509 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( Re `  -u A )  e.  (
-u ( pi  / 
2 ) (,) (
pi  /  2 ) ) )
93 asinsinlem 20719 . . . . . . . . . . . . . . 15  |-  ( (
-u A  e.  CC  /\  ( Re `  -u A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  ->  0  <  ( Re `  ( exp `  ( _i  x.  -u A
) ) ) )
9477, 92, 93syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  0  <  (
Re `  ( exp `  ( _i  x.  -u A
) ) ) )
95 mulneg12 9461 . . . . . . . . . . . . . . . . 17  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  =  ( _i  x.  -u A
) )
965, 8, 95sylancr 645 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( -u _i  x.  A )  =  ( _i  x.  -u A
) )
9796fveq2d 5723 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( exp `  ( -u _i  x.  A ) )  =  ( exp `  ( _i  x.  -u A
) ) )
9897fveq2d 5723 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( Re `  ( exp `  ( -u _i  x.  A ) ) )  =  ( Re
`  ( exp `  (
_i  x.  -u A ) ) ) )
9994, 98breqtrrd 4230 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  0  <  (
Re `  ( exp `  ( -u _i  x.  A ) ) ) )
10073, 74, 75, 99addgt0d 9590 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  0  <  (
( Re `  ( exp `  ( _i  x.  A ) ) )  +  ( Re `  ( exp `  ( -u _i  x.  A ) ) ) ) )
10112, 68readdd 12007 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( Re `  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) )  =  ( ( Re `  ( exp `  ( _i  x.  A
) ) )  +  ( Re `  ( exp `  ( -u _i  x.  A ) ) ) ) )
102100, 101breqtrrd 4230 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  0  <  (
Re `  ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) ) ) )
10363, 70, 72, 102mulgt0d 9214 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  0  <  (
( 1  /  2
)  x.  ( Re
`  ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
104 cosval 12712 . . . . . . . . . . . . . 14  |-  ( A  e.  CC  ->  ( cos `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) )
105104adantr 452 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( cos `  A
)  =  ( ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) )
106 2ne0 10072 . . . . . . . . . . . . . . 15  |-  2  =/=  0
107106a1i 11 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  2  =/=  0
)
10869, 23, 107divrec2d 9783 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2
)  =  ( ( 1  /  2 )  x.  ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) ) ) )
109105, 108eqtrd 2467 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( cos `  A
)  =  ( ( 1  /  2 )  x.  ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) ) ) )
110109fveq2d 5723 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( Re `  ( cos `  A ) )  =  ( Re
`  ( ( 1  /  2 )  x.  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
111 remul2 11923 . . . . . . . . . . . 12  |-  ( ( ( 1  /  2
)  e.  RR  /\  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )  -> 
( Re `  (
( 1  /  2
)  x.  ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) ) ) )  =  ( ( 1  /  2 )  x.  ( Re `  (
( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
11262, 69, 111sylancr 645 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( Re `  ( ( 1  / 
2 )  x.  (
( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) ) )  =  ( ( 1  /  2
)  x.  ( Re
`  ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
113110, 112eqtrd 2467 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( Re `  ( cos `  A ) )  =  ( ( 1  /  2 )  x.  ( Re `  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
114103, 113breqtrrd 4230 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  0  <  (
Re `  ( cos `  A ) ) )
11543oveq1d 6087 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( exp `  ( _i  x.  A
) )  -  (
_i  x.  ( sin `  A ) ) )  =  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) )  -  (
_i  x.  ( sin `  A ) ) ) )
11627, 7pncand 9401 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) )  -  (
_i  x.  ( sin `  A ) ) )  =  ( cos `  A
) )
117115, 116eqtrd 2467 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( exp `  ( _i  x.  A
) )  -  (
_i  x.  ( sin `  A ) ) )  =  ( cos `  A
) )
118117fveq2d 5723 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( Re `  ( ( exp `  (
_i  x.  A )
)  -  ( _i  x.  ( sin `  A
) ) ) )  =  ( Re `  ( cos `  A ) ) )
119114, 118breqtrrd 4230 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  0  <  (
Re `  ( ( exp `  ( _i  x.  A ) )  -  ( _i  x.  ( sin `  A ) ) ) ) )
12014, 18, 60, 119eqsqr2d 12160 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( exp `  ( _i  x.  A
) )  -  (
_i  x.  ( sin `  A ) ) )  =  ( sqr `  (
1  -  ( ( sin `  A ) ^ 2 ) ) ) )
121120oveq2d 6088 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( _i  x.  ( sin `  A
) )  +  ( ( exp `  (
_i  x.  A )
)  -  ( _i  x.  ( sin `  A
) ) ) )  =  ( ( _i  x.  ( sin `  A
) )  +  ( sqr `  ( 1  -  ( ( sin `  A ) ^ 2 ) ) ) ) )
12213, 121eqtr3d 2469 . . . . 5  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( exp `  (
_i  x.  A )
)  =  ( ( _i  x.  ( sin `  A ) )  +  ( sqr `  (
1  -  ( ( sin `  A ) ^ 2 ) ) ) ) )
123122fveq2d 5723 . . . 4  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( log `  ( exp `  ( _i  x.  A ) ) )  =  ( log `  (
( _i  x.  ( sin `  A ) )  +  ( sqr `  (
1  -  ( ( sin `  A ) ^ 2 ) ) ) ) ) )
12481renegcli 9351 . . . . . . . . 9  |-  -u pi  e.  RR
125124a1i 11 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  -u pi  e.  RR )
12683a1i 11 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  -u ( pi  / 
2 )  e.  RR )
127 elioore 10935 . . . . . . . . 9  |-  ( ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( Re `  A
)  e.  RR )
128127adantl 453 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( Re `  A )  e.  RR )
129 pipos 20361 . . . . . . . . . . . 12  |-  0  <  pi
13081, 129elrpii 10604 . . . . . . . . . . 11  |-  pi  e.  RR+
131 rphalflt 10627 . . . . . . . . . . 11  |-  ( pi  e.  RR+  ->  ( pi 
/  2 )  < 
pi )
132130, 131ax-mp 8 . . . . . . . . . 10  |-  ( pi 
/  2 )  < 
pi
13382, 81ltnegi 9560 . . . . . . . . . 10  |-  ( ( pi  /  2 )  <  pi  <->  -u pi  <  -u ( pi  /  2
) )
134132, 133mpbi 200 . . . . . . . . 9  |-  -u pi  <  -u ( pi  / 
2 )
135134a1i 11 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  -u pi  <  -u (
pi  /  2 ) )
136 eliooord 10959 . . . . . . . . . 10  |-  ( ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( -u ( pi  / 
2 )  <  (
Re `  A )  /\  ( Re `  A
)  <  ( pi  /  2 ) ) )
137136adantl 453 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( -u (
pi  /  2 )  <  ( Re `  A )  /\  (
Re `  A )  <  ( pi  /  2
) ) )
138137simpld 446 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  -u ( pi  / 
2 )  <  (
Re `  A )
)
139125, 126, 128, 135, 138lttrd 9220 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  -u pi  <  (
Re `  A )
)
140 imre 11901 . . . . . . . . 9  |-  ( ( _i  x.  A )  e.  CC  ->  (
Im `  ( _i  x.  A ) )  =  ( Re `  ( -u _i  x.  ( _i  x.  A ) ) ) )
14110, 140syl 16 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( Im `  ( _i  x.  A
) )  =  ( Re `  ( -u _i  x.  ( _i  x.  A ) ) ) )
1425, 5mulneg1i 9468 . . . . . . . . . . . 12  |-  ( -u _i  x.  _i )  = 
-u ( _i  x.  _i )
143 ixi 9640 . . . . . . . . . . . . 13  |-  ( _i  x.  _i )  = 
-u 1
144143negeqi 9288 . . . . . . . . . . . 12  |-  -u (
_i  x.  _i )  =  -u -u 1
14515negnegi 9359 . . . . . . . . . . . 12  |-  -u -u 1  =  1
146142, 144, 1453eqtri 2459 . . . . . . . . . . 11  |-  ( -u _i  x.  _i )  =  1
147146oveq1i 6082 . . . . . . . . . 10  |-  ( (
-u _i  x.  _i )  x.  A )  =  ( 1  x.  A )
14864a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  -u _i  e.  CC )
1495a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  _i  e.  CC )
150148, 149, 8mulassd 9100 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( -u _i  x.  _i )  x.  A )  =  (
-u _i  x.  (
_i  x.  A )
) )
151 mulid2 9078 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
1  x.  A )  =  A )
152151adantr 452 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( 1  x.  A )  =  A )
153147, 150, 1523eqtr3a 2491 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( -u _i  x.  ( _i  x.  A
) )  =  A )
154153fveq2d 5723 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( Re `  ( -u _i  x.  (
_i  x.  A )
) )  =  ( Re `  A ) )
155141, 154eqtrd 2467 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( Im `  ( _i  x.  A
) )  =  ( Re `  A ) )
156139, 155breqtrrd 4230 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  -u pi  <  (
Im `  ( _i  x.  A ) ) )
15781a1i 11 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  pi  e.  RR )
15882a1i 11 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( pi  / 
2 )  e.  RR )
159137simprd 450 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( Re `  A )  <  (
pi  /  2 ) )
160132a1i 11 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( pi  / 
2 )  <  pi )
161128, 158, 157, 159, 160lttrd 9220 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( Re `  A )  <  pi )
162128, 157, 161ltled 9210 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( Re `  A )  <_  pi )
163155, 162eqbrtrd 4224 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( Im `  ( _i  x.  A
) )  <_  pi )
164 ellogrn 20445 . . . . . 6  |-  ( ( _i  x.  A )  e.  ran  log  <->  ( (
_i  x.  A )  e.  CC  /\  -u pi  <  ( Im `  (
_i  x.  A )
)  /\  ( Im `  ( _i  x.  A
) )  <_  pi ) )
16510, 156, 163, 164syl3anbrc 1138 . . . . 5  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( _i  x.  A )  e.  ran  log )
166 logef 20464 . . . . 5  |-  ( ( _i  x.  A )  e.  ran  log  ->  ( log `  ( exp `  ( _i  x.  A
) ) )  =  ( _i  x.  A
) )
167165, 166syl 16 . . . 4  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( log `  ( exp `  ( _i  x.  A ) ) )  =  ( _i  x.  A ) )
168123, 167eqtr3d 2469 . . 3  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( log `  (
( _i  x.  ( sin `  A ) )  +  ( sqr `  (
1  -  ( ( sin `  A ) ^ 2 ) ) ) ) )  =  ( _i  x.  A
) )
169168oveq2d 6088 . 2  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( -u _i  x.  ( log `  (
( _i  x.  ( sin `  A ) )  +  ( sqr `  (
1  -  ( ( sin `  A ) ^ 2 ) ) ) ) ) )  =  ( -u _i  x.  ( _i  x.  A
) ) )
1704, 169, 1533eqtrd 2471 1  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  (arcsin `  ( sin `  A ) )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   class class class wbr 4204   ran crn 4870   ` cfv 5445  (class class class)co 6072   CCcc 8977   RRcr 8978   0cc0 8979   1c1 8980   _ici 8981    + caddc 8982    x. cmul 8984    < clt 9109    <_ cle 9110    - cmin 9280   -ucneg 9281    / cdiv 9666   2c2 10038   RR+crp 10601   (,)cioo 10905   ^cexp 11370   Recre 11890   Imcim 11891   sqrcsqr 12026   expce 12652   sincsin 12654   cosccos 12655   picpi 12657   logclog 20440  arcsincasin 20690
This theorem is referenced by:  acoscos  20721  reasinsin  20724  asinsinb  20725
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-inf2 7585  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056  ax-pre-sup 9057  ax-addf 9058  ax-mulf 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-of 6296  df-1st 6340  df-2nd 6341  df-riota 6540  df-recs 6624  df-rdg 6659  df-1o 6715  df-2o 6716  df-oadd 6719  df-er 6896  df-map 7011  df-pm 7012  df-ixp 7055  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-fi 7407  df-sup 7437  df-oi 7468  df-card 7815  df-cda 8037  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-div 9667  df-nn 9990  df-2 10047  df-3 10048  df-4 10049  df-5 10050  df-6 10051  df-7 10052  df-8 10053  df-9 10054  df-10 10055  df-n0 10211  df-z 10272  df-dec 10372  df-uz 10478  df-q 10564  df-rp 10602  df-xneg 10699  df-xadd 10700  df-xmul 10701  df-ioo 10909  df-ioc 10910  df-ico 10911  df-icc 10912  df-fz 11033  df-fzo 11124  df-fl 11190  df-mod 11239  df-seq 11312  df-exp 11371  df-fac 11555  df-bc 11582  df-hash 11607  df-shft 11870  df-cj 11892  df-re 11893  df-im 11894  df-sqr 12028  df-abs 12029  df-limsup 12253  df-clim 12270  df-rlim 12271  df-sum 12468  df-ef 12658  df-sin 12660  df-cos 12661  df-pi 12663  df-struct 13459  df-ndx 13460  df-slot 13461  df-base 13462  df-sets 13463  df-ress 13464  df-plusg 13530  df-mulr 13531  df-starv 13532  df-sca 13533  df-vsca 13534  df-tset 13536  df-ple 13537  df-ds 13539  df-unif 13540  df-hom 13541  df-cco 13542  df-rest 13638  df-topn 13639  df-topgen 13655  df-pt 13656  df-prds 13659  df-xrs 13714  df-0g 13715  df-gsum 13716  df-qtop 13721  df-imas 13722  df-xps 13724  df-mre 13799  df-mrc 13800  df-acs 13802  df-mnd 14678  df-submnd 14727  df-mulg 14803  df-cntz 15104  df-cmn 15402  df-psmet 16682  df-xmet 16683  df-met 16684  df-bl 16685  df-mopn 16686  df-fbas 16687  df-fg 16688  df-cnfld 16692  df-top 16951  df-bases 16953  df-topon 16954  df-topsp 16955  df-cld 17071  df-ntr 17072  df-cls 17073  df-nei 17150  df-lp 17188  df-perf 17189  df-cn 17279  df-cnp 17280  df-haus 17367  df-tx 17582  df-hmeo 17775  df-fil 17866  df-fm 17958  df-flim 17959  df-flf 17960  df-xms 18338  df-ms 18339  df-tms 18340  df-cncf 18896  df-limc 19741  df-dv 19742  df-log 20442  df-asin 20693
  Copyright terms: Public domain W3C validator