MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aspval Unicode version

Theorem aspval 16084
Description: Value of the algebraic closure operation inside an associative algebra. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
aspval.a  |-  A  =  (AlgSpan `  W )
aspval.v  |-  V  =  ( Base `  W
)
aspval.l  |-  L  =  ( LSubSp `  W )
Assertion
Ref Expression
aspval  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  ( A `  S )  =  |^| { t  e.  ( (SubRing `  W
)  i^i  L )  |  S  C_  t } )
Distinct variable groups:    t, L    t, S    t, V    t, W
Allowed substitution hint:    A( t)

Proof of Theorem aspval
Dummy variables  s  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aspval.a . . . . 5  |-  A  =  (AlgSpan `  W )
2 fveq2 5541 . . . . . . . . 9  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
3 aspval.v . . . . . . . . 9  |-  V  =  ( Base `  W
)
42, 3syl6eqr 2346 . . . . . . . 8  |-  ( w  =  W  ->  ( Base `  w )  =  V )
54pweqd 3643 . . . . . . 7  |-  ( w  =  W  ->  ~P ( Base `  w )  =  ~P V )
6 fveq2 5541 . . . . . . . . . 10  |-  ( w  =  W  ->  (SubRing `  w )  =  (SubRing `  W ) )
7 fveq2 5541 . . . . . . . . . . 11  |-  ( w  =  W  ->  ( LSubSp `
 w )  =  ( LSubSp `  W )
)
8 aspval.l . . . . . . . . . . 11  |-  L  =  ( LSubSp `  W )
97, 8syl6eqr 2346 . . . . . . . . . 10  |-  ( w  =  W  ->  ( LSubSp `
 w )  =  L )
106, 9ineq12d 3384 . . . . . . . . 9  |-  ( w  =  W  ->  (
(SubRing `  w )  i^i  ( LSubSp `  w )
)  =  ( (SubRing `  W )  i^i  L
) )
11 rabeq 2795 . . . . . . . . 9  |-  ( ( (SubRing `  w )  i^i  ( LSubSp `  w )
)  =  ( (SubRing `  W )  i^i  L
)  ->  { t  e.  ( (SubRing `  w
)  i^i  ( LSubSp `  w ) )  |  s  C_  t }  =  { t  e.  ( (SubRing `  W )  i^i  L )  |  s 
C_  t } )
1210, 11syl 15 . . . . . . . 8  |-  ( w  =  W  ->  { t  e.  ( (SubRing `  w
)  i^i  ( LSubSp `  w ) )  |  s  C_  t }  =  { t  e.  ( (SubRing `  W )  i^i  L )  |  s 
C_  t } )
1312inteqd 3883 . . . . . . 7  |-  ( w  =  W  ->  |^| { t  e.  ( (SubRing `  w
)  i^i  ( LSubSp `  w ) )  |  s  C_  t }  =  |^| { t  e.  ( (SubRing `  W
)  i^i  L )  |  s  C_  t } )
145, 13mpteq12dv 4114 . . . . . 6  |-  ( w  =  W  ->  (
s  e.  ~P ( Base `  w )  |->  |^|
{ t  e.  ( (SubRing `  w )  i^i  ( LSubSp `  w )
)  |  s  C_  t } )  =  ( s  e.  ~P V  |-> 
|^| { t  e.  ( (SubRing `  W )  i^i  L )  |  s 
C_  t } ) )
15 df-asp 16070 . . . . . 6  |- AlgSpan  =  ( w  e. AssAlg  |->  ( s  e.  ~P ( Base `  w )  |->  |^| { t  e.  ( (SubRing `  w
)  i^i  ( LSubSp `  w ) )  |  s  C_  t }
) )
16 fvex 5555 . . . . . . . . 9  |-  ( Base `  W )  e.  _V
173, 16eqeltri 2366 . . . . . . . 8  |-  V  e. 
_V
1817pwex 4209 . . . . . . 7  |-  ~P V  e.  _V
1918mptex 5762 . . . . . 6  |-  ( s  e.  ~P V  |->  |^|
{ t  e.  ( (SubRing `  W )  i^i  L )  |  s 
C_  t } )  e.  _V
2014, 15, 19fvmpt 5618 . . . . 5  |-  ( W  e. AssAlg  ->  (AlgSpan `  W )  =  ( s  e. 
~P V  |->  |^| { t  e.  ( (SubRing `  W
)  i^i  L )  |  s  C_  t } ) )
211, 20syl5eq 2340 . . . 4  |-  ( W  e. AssAlg  ->  A  =  ( s  e.  ~P V  |-> 
|^| { t  e.  ( (SubRing `  W )  i^i  L )  |  s 
C_  t } ) )
2221fveq1d 5543 . . 3  |-  ( W  e. AssAlg  ->  ( A `  S )  =  ( ( s  e.  ~P V  |->  |^| { t  e.  ( (SubRing `  W
)  i^i  L )  |  s  C_  t } ) `  S ) )
2322adantr 451 . 2  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  ( A `  S )  =  ( ( s  e.  ~P V  |->  |^|
{ t  e.  ( (SubRing `  W )  i^i  L )  |  s 
C_  t } ) `
 S ) )
24 simpr 447 . . . 4  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  S  C_  V )
2517elpw2 4191 . . . 4  |-  ( S  e.  ~P V  <->  S  C_  V
)
2624, 25sylibr 203 . . 3  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  S  e.  ~P V )
27 assarng 16077 . . . . . . 7  |-  ( W  e. AssAlg  ->  W  e.  Ring )
283subrgid 15563 . . . . . . 7  |-  ( W  e.  Ring  ->  V  e.  (SubRing `  W )
)
2927, 28syl 15 . . . . . 6  |-  ( W  e. AssAlg  ->  V  e.  (SubRing `  W ) )
30 assalmod 16076 . . . . . . 7  |-  ( W  e. AssAlg  ->  W  e.  LMod )
313, 8lss1 15712 . . . . . . 7  |-  ( W  e.  LMod  ->  V  e.  L )
3230, 31syl 15 . . . . . 6  |-  ( W  e. AssAlg  ->  V  e.  L
)
33 elin 3371 . . . . . 6  |-  ( V  e.  ( (SubRing `  W
)  i^i  L )  <->  ( V  e.  (SubRing `  W
)  /\  V  e.  L ) )
3429, 32, 33sylanbrc 645 . . . . 5  |-  ( W  e. AssAlg  ->  V  e.  ( (SubRing `  W )  i^i  L ) )
35 sseq2 3213 . . . . . 6  |-  ( t  =  V  ->  ( S  C_  t  <->  S  C_  V
) )
3635rspcev 2897 . . . . 5  |-  ( ( V  e.  ( (SubRing `  W )  i^i  L
)  /\  S  C_  V
)  ->  E. t  e.  ( (SubRing `  W
)  i^i  L ) S  C_  t )
3734, 36sylan 457 . . . 4  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  E. t  e.  ( (SubRing `  W
)  i^i  L ) S  C_  t )
38 intexrab 4186 . . . 4  |-  ( E. t  e.  ( (SubRing `  W )  i^i  L
) S  C_  t  <->  |^|
{ t  e.  ( (SubRing `  W )  i^i  L )  |  S  C_  t }  e.  _V )
3937, 38sylib 188 . . 3  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  |^| { t  e.  ( (SubRing `  W
)  i^i  L )  |  S  C_  t }  e.  _V )
40 sseq1 3212 . . . . . 6  |-  ( s  =  S  ->  (
s  C_  t  <->  S  C_  t
) )
4140rabbidv 2793 . . . . 5  |-  ( s  =  S  ->  { t  e.  ( (SubRing `  W
)  i^i  L )  |  s  C_  t }  =  { t  e.  ( (SubRing `  W
)  i^i  L )  |  S  C_  t } )
4241inteqd 3883 . . . 4  |-  ( s  =  S  ->  |^| { t  e.  ( (SubRing `  W
)  i^i  L )  |  s  C_  t }  =  |^| { t  e.  ( (SubRing `  W
)  i^i  L )  |  S  C_  t } )
43 eqid 2296 . . . 4  |-  ( s  e.  ~P V  |->  |^|
{ t  e.  ( (SubRing `  W )  i^i  L )  |  s 
C_  t } )  =  ( s  e. 
~P V  |->  |^| { t  e.  ( (SubRing `  W
)  i^i  L )  |  s  C_  t } )
4442, 43fvmptg 5616 . . 3  |-  ( ( S  e.  ~P V  /\  |^| { t  e.  ( (SubRing `  W
)  i^i  L )  |  S  C_  t }  e.  _V )  -> 
( ( s  e. 
~P V  |->  |^| { t  e.  ( (SubRing `  W
)  i^i  L )  |  s  C_  t } ) `  S )  =  |^| { t  e.  ( (SubRing `  W
)  i^i  L )  |  S  C_  t } )
4526, 39, 44syl2anc 642 . 2  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  (
( s  e.  ~P V  |->  |^| { t  e.  ( (SubRing `  W
)  i^i  L )  |  s  C_  t } ) `  S )  =  |^| { t  e.  ( (SubRing `  W
)  i^i  L )  |  S  C_  t } )
4623, 45eqtrd 2328 1  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  ( A `  S )  =  |^| { t  e.  ( (SubRing `  W
)  i^i  L )  |  S  C_  t } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   E.wrex 2557   {crab 2560   _Vcvv 2801    i^i cin 3164    C_ wss 3165   ~Pcpw 3638   |^|cint 3878    e. cmpt 4093   ` cfv 5271   Basecbs 13164   Ringcrg 15353  SubRingcsubrg 15557   LModclmod 15643   LSubSpclss 15705  AssAlgcasa 16066  AlgSpancasp 16067
This theorem is referenced by:  asplss  16085  aspid  16086  aspsubrg  16087  aspss  16088  aspssid  16089  aspval2  16102
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-0g 13420  df-mnd 14383  df-grp 14505  df-mgp 15342  df-rng 15356  df-ur 15358  df-subrg 15559  df-lmod 15645  df-lss 15706  df-assa 16069  df-asp 16070
  Copyright terms: Public domain W3C validator