MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assaass Structured version   Unicode version

Theorem assaass 16379
Description: Left-associative property of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
isassa.v  |-  V  =  ( Base `  W
)
isassa.f  |-  F  =  (Scalar `  W )
isassa.b  |-  B  =  ( Base `  F
)
isassa.s  |-  .x.  =  ( .s `  W )
isassa.t  |-  .X.  =  ( .r `  W )
Assertion
Ref Expression
assaass  |-  ( ( W  e. AssAlg  /\  ( A  e.  B  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( ( A  .x.  X )  .X.  Y )  =  ( A  .x.  ( X 
.X.  Y ) ) )

Proof of Theorem assaass
StepHypRef Expression
1 isassa.v . . 3  |-  V  =  ( Base `  W
)
2 isassa.f . . 3  |-  F  =  (Scalar `  W )
3 isassa.b . . 3  |-  B  =  ( Base `  F
)
4 isassa.s . . 3  |-  .x.  =  ( .s `  W )
5 isassa.t . . 3  |-  .X.  =  ( .r `  W )
61, 2, 3, 4, 5assalem 16378 . 2  |-  ( ( W  e. AssAlg  /\  ( A  e.  B  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( (
( A  .x.  X
)  .X.  Y )  =  ( A  .x.  ( X  .X.  Y ) )  /\  ( X 
.X.  ( A  .x.  Y ) )  =  ( A  .x.  ( X  .X.  Y ) ) ) )
76simpld 447 1  |-  ( ( W  e. AssAlg  /\  ( A  e.  B  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( ( A  .x.  X )  .X.  Y )  =  ( A  .x.  ( X 
.X.  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   ` cfv 5456  (class class class)co 6083   Basecbs 13471   .rcmulr 13532  Scalarcsca 13534   .scvsca 13535  AssAlgcasa 16371
This theorem is referenced by:  issubassa  16385  asclmul1  16400  asclrhm  16402  mplmon2mul  16563
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-nul 4340
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-iota 5420  df-fv 5464  df-ov 6086  df-assa 16374
  Copyright terms: Public domain W3C validator