Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  assaassr Structured version   Unicode version

Theorem assaassr 16378
 Description: Right-associative property of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
isassa.v
isassa.f Scalar
isassa.b
isassa.s
isassa.t
Assertion
Ref Expression
assaassr AssAlg

Proof of Theorem assaassr
StepHypRef Expression
1 isassa.v . . 3
2 isassa.f . . 3 Scalar
3 isassa.b . . 3
4 isassa.s . . 3
5 isassa.t . . 3
61, 2, 3, 4, 5assalem 16376 . 2 AssAlg
76simprd 450 1 AssAlg
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   w3a 936   wceq 1652   wcel 1725  cfv 5454  (class class class)co 6081  cbs 13469  cmulr 13530  Scalarcsca 13532  cvsca 13533  AssAlgcasa 16369 This theorem is referenced by:  issubassa  16383  asclmul2  16399  asclrhm  16400  mplmon2mul  16561 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-nul 4338 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-iota 5418  df-fv 5462  df-ov 6084  df-assa 16372
 Copyright terms: Public domain W3C validator