MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assaassr Unicode version

Theorem assaassr 16075
Description: Right-associative property of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
isassa.v  |-  V  =  ( Base `  W
)
isassa.f  |-  F  =  (Scalar `  W )
isassa.b  |-  B  =  ( Base `  F
)
isassa.s  |-  .x.  =  ( .s `  W )
isassa.t  |-  .X.  =  ( .r `  W )
Assertion
Ref Expression
assaassr  |-  ( ( W  e. AssAlg  /\  ( A  e.  B  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( X  .X.  ( A  .x.  Y
) )  =  ( A  .x.  ( X 
.X.  Y ) ) )

Proof of Theorem assaassr
StepHypRef Expression
1 isassa.v . . 3  |-  V  =  ( Base `  W
)
2 isassa.f . . 3  |-  F  =  (Scalar `  W )
3 isassa.b . . 3  |-  B  =  ( Base `  F
)
4 isassa.s . . 3  |-  .x.  =  ( .s `  W )
5 isassa.t . . 3  |-  .X.  =  ( .r `  W )
61, 2, 3, 4, 5assalem 16073 . 2  |-  ( ( W  e. AssAlg  /\  ( A  e.  B  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( (
( A  .x.  X
)  .X.  Y )  =  ( A  .x.  ( X  .X.  Y ) )  /\  ( X 
.X.  ( A  .x.  Y ) )  =  ( A  .x.  ( X  .X.  Y ) ) ) )
76simprd 449 1  |-  ( ( W  e. AssAlg  /\  ( A  e.  B  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( X  .X.  ( A  .x.  Y
) )  =  ( A  .x.  ( X 
.X.  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   ` cfv 5271  (class class class)co 5874   Basecbs 13164   .rcmulr 13225  Scalarcsca 13227   .scvsca 13228  AssAlgcasa 16066
This theorem is referenced by:  issubassa  16080  asclmul2  16096  asclrhm  16097  mplmon2mul  16258
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-nul 4165
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-iota 5235  df-fv 5279  df-ov 5877  df-assa 16069
  Copyright terms: Public domain W3C validator