MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assasca Unicode version

Theorem assasca 16062
Description: An associative algebra's scalar field is a commutative ring. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypothesis
Ref Expression
assasca.f  |-  F  =  (Scalar `  W )
Assertion
Ref Expression
assasca  |-  ( W  e. AssAlg  ->  F  e.  CRing )

Proof of Theorem assasca
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2283 . . . 4  |-  ( Base `  W )  =  (
Base `  W )
2 assasca.f . . . 4  |-  F  =  (Scalar `  W )
3 eqid 2283 . . . 4  |-  ( Base `  F )  =  (
Base `  F )
4 eqid 2283 . . . 4  |-  ( .s
`  W )  =  ( .s `  W
)
5 eqid 2283 . . . 4  |-  ( .r
`  W )  =  ( .r `  W
)
61, 2, 3, 4, 5isassa 16056 . . 3  |-  ( W  e. AssAlg 
<->  ( ( W  e. 
LMod  /\  W  e.  Ring  /\  F  e.  CRing )  /\  A. z  e.  ( Base `  F ) A. x  e.  ( Base `  W
) A. y  e.  ( Base `  W
) ( ( ( z ( .s `  W ) x ) ( .r `  W
) y )  =  ( z ( .s
`  W ) ( x ( .r `  W ) y ) )  /\  ( x ( .r `  W
) ( z ( .s `  W ) y ) )  =  ( z ( .s
`  W ) ( x ( .r `  W ) y ) ) ) ) )
76simplbi 446 . 2  |-  ( W  e. AssAlg  ->  ( W  e. 
LMod  /\  W  e.  Ring  /\  F  e.  CRing ) )
87simp3d 969 1  |-  ( W  e. AssAlg  ->  F  e.  CRing )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   ` cfv 5255  (class class class)co 5858   Basecbs 13148   .rcmulr 13209  Scalarcsca 13211   .scvsca 13212   Ringcrg 15337   CRingccrg 15338   LModclmod 15627  AssAlgcasa 16050
This theorem is referenced by:  issubassa  16064  asclrhm  16081
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-nul 4149
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263  df-ov 5861  df-assa 16053
  Copyright terms: Public domain W3C validator