Mathbox for Jarvin Udandy < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  astbstanbst Unicode version

Theorem astbstanbst 27980
 Description: Given a is equivalent to T., also given that b is equivalent to T, there exists a proof for a and b is equivalent to T. (Contributed by Jarvin Udandy, 29-Aug-2016.)
Hypotheses
Ref Expression
astbstanbst.1
astbstanbst.2
Assertion
Ref Expression
astbstanbst

Proof of Theorem astbstanbst
StepHypRef Expression
1 astbstanbst.1 . . . . 5
2 bi2 189 . . . . 5
31, 2ax-mp 8 . . . 4
43trud 1314 . . 3
5 astbstanbst.2 . . . . 5
6 bi2 189 . . . . 5
75, 6ax-mp 8 . . . 4
87trud 1314 . . 3
94, 8pm3.2i 441 . 2
109bitru 1317 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 176   wa 358   wtru 1307 This theorem is referenced by:  dandysum2p2e4  28046 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8 This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310
 Copyright terms: Public domain W3C validator