MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asymref Structured version   Unicode version

Theorem asymref 5250
Description: Two ways of saying a relation is antisymmetric and reflexive.  U. U. R is the field of a relation by relfld 5395. (Contributed by NM, 6-May-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
asymref  |-  ( ( R  i^i  `' R
)  =  (  _I  |`  U. U. R )  <->  A. x  e.  U. U. R A. y ( ( x R y  /\  y R x )  <->  x  =  y ) )
Distinct variable group:    x, y, R

Proof of Theorem asymref
StepHypRef Expression
1 df-br 4213 . . . . . . . . . . 11  |-  ( x R y  <->  <. x ,  y >.  e.  R
)
2 vex 2959 . . . . . . . . . . . 12  |-  x  e. 
_V
3 vex 2959 . . . . . . . . . . . 12  |-  y  e. 
_V
42, 3opeluu 4715 . . . . . . . . . . 11  |-  ( <.
x ,  y >.  e.  R  ->  ( x  e.  U. U. R  /\  y  e.  U. U. R ) )
51, 4sylbi 188 . . . . . . . . . 10  |-  ( x R y  ->  (
x  e.  U. U. R  /\  y  e.  U. U. R ) )
65simpld 446 . . . . . . . . 9  |-  ( x R y  ->  x  e.  U. U. R )
76adantr 452 . . . . . . . 8  |-  ( ( x R y  /\  y R x )  ->  x  e.  U. U. R
)
87pm4.71ri 615 . . . . . . 7  |-  ( ( x R y  /\  y R x )  <->  ( x  e.  U. U. R  /\  ( x R y  /\  y R x ) ) )
98bibi1i 306 . . . . . 6  |-  ( ( ( x R y  /\  y R x )  <->  ( x  e. 
U. U. R  /\  x  =  y ) )  <-> 
( ( x  e. 
U. U. R  /\  (
x R y  /\  y R x ) )  <-> 
( x  e.  U. U. R  /\  x  =  y ) ) )
10 elin 3530 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  ( R  i^i  `' R )  <->  ( <. x ,  y >.  e.  R  /\  <. x ,  y
>.  e.  `' R ) )
112, 3brcnv 5055 . . . . . . . . . 10  |-  ( x `' R y  <->  y R x )
12 df-br 4213 . . . . . . . . . 10  |-  ( x `' R y  <->  <. x ,  y >.  e.  `' R )
1311, 12bitr3i 243 . . . . . . . . 9  |-  ( y R x  <->  <. x ,  y >.  e.  `' R )
141, 13anbi12i 679 . . . . . . . 8  |-  ( ( x R y  /\  y R x )  <->  ( <. x ,  y >.  e.  R  /\  <. x ,  y
>.  e.  `' R ) )
1510, 14bitr4i 244 . . . . . . 7  |-  ( <.
x ,  y >.  e.  ( R  i^i  `' R )  <->  ( x R y  /\  y R x ) )
163opelres 5151 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  (  _I  |`  U. U. R )  <->  ( <. x ,  y >.  e.  _I  /\  x  e.  U. U. R ) )
17 df-br 4213 . . . . . . . . . 10  |-  ( x  _I  y  <->  <. x ,  y >.  e.  _I  )
183ideq 5025 . . . . . . . . . 10  |-  ( x  _I  y  <->  x  =  y )
1917, 18bitr3i 243 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  _I  <->  x  =  y
)
2019anbi2ci 678 . . . . . . . 8  |-  ( (
<. x ,  y >.  e.  _I  /\  x  e. 
U. U. R )  <->  ( x  e.  U. U. R  /\  x  =  y )
)
2116, 20bitri 241 . . . . . . 7  |-  ( <.
x ,  y >.  e.  (  _I  |`  U. U. R )  <->  ( x  e.  U. U. R  /\  x  =  y )
)
2215, 21bibi12i 307 . . . . . 6  |-  ( (
<. x ,  y >.  e.  ( R  i^i  `' R )  <->  <. x ,  y >.  e.  (  _I  |`  U. U. R
) )  <->  ( (
x R y  /\  y R x )  <->  ( x  e.  U. U. R  /\  x  =  y )
) )
23 pm5.32 618 . . . . . 6  |-  ( ( x  e.  U. U. R  ->  ( ( x R y  /\  y R x )  <->  x  =  y ) )  <->  ( (
x  e.  U. U. R  /\  ( x R y  /\  y R x ) )  <->  ( x  e.  U. U. R  /\  x  =  y )
) )
249, 22, 233bitr4i 269 . . . . 5  |-  ( (
<. x ,  y >.  e.  ( R  i^i  `' R )  <->  <. x ,  y >.  e.  (  _I  |`  U. U. R
) )  <->  ( x  e.  U. U. R  -> 
( ( x R y  /\  y R x )  <->  x  =  y ) ) )
2524albii 1575 . . . 4  |-  ( A. y ( <. x ,  y >.  e.  ( R  i^i  `' R
)  <->  <. x ,  y
>.  e.  (  _I  |`  U. U. R ) )  <->  A. y
( x  e.  U. U. R  ->  ( (
x R y  /\  y R x )  <->  x  =  y ) ) )
26 19.21v 1913 . . . 4  |-  ( A. y ( x  e. 
U. U. R  ->  (
( x R y  /\  y R x )  <->  x  =  y
) )  <->  ( x  e.  U. U. R  ->  A. y ( ( x R y  /\  y R x )  <->  x  =  y ) ) )
2725, 26bitri 241 . . 3  |-  ( A. y ( <. x ,  y >.  e.  ( R  i^i  `' R
)  <->  <. x ,  y
>.  e.  (  _I  |`  U. U. R ) )  <->  ( x  e.  U. U. R  ->  A. y ( ( x R y  /\  y R x )  <->  x  =  y ) ) )
2827albii 1575 . 2  |-  ( A. x A. y ( <.
x ,  y >.  e.  ( R  i^i  `' R )  <->  <. x ,  y >.  e.  (  _I  |`  U. U. R
) )  <->  A. x
( x  e.  U. U. R  ->  A. y
( ( x R y  /\  y R x )  <->  x  =  y ) ) )
29 relcnv 5242 . . . 4  |-  Rel  `' R
30 relin2 4993 . . . 4  |-  ( Rel  `' R  ->  Rel  ( R  i^i  `' R ) )
3129, 30ax-mp 8 . . 3  |-  Rel  ( R  i^i  `' R )
32 relres 5174 . . 3  |-  Rel  (  _I  |`  U. U. R
)
33 eqrel 4965 . . 3  |-  ( ( Rel  ( R  i^i  `' R )  /\  Rel  (  _I  |`  U. U. R ) )  -> 
( ( R  i^i  `' R )  =  (  _I  |`  U. U. R
)  <->  A. x A. y
( <. x ,  y
>.  e.  ( R  i^i  `' R )  <->  <. x ,  y >.  e.  (  _I  |`  U. U. R
) ) ) )
3431, 32, 33mp2an 654 . 2  |-  ( ( R  i^i  `' R
)  =  (  _I  |`  U. U. R )  <->  A. x A. y (
<. x ,  y >.  e.  ( R  i^i  `' R )  <->  <. x ,  y >.  e.  (  _I  |`  U. U. R
) ) )
35 df-ral 2710 . 2  |-  ( A. x  e.  U. U. R A. y ( ( x R y  /\  y R x )  <->  x  =  y )  <->  A. x
( x  e.  U. U. R  ->  A. y
( ( x R y  /\  y R x )  <->  x  =  y ) ) )
3628, 34, 353bitr4i 269 1  |-  ( ( R  i^i  `' R
)  =  (  _I  |`  U. U. R )  <->  A. x  e.  U. U. R A. y ( ( x R y  /\  y R x )  <->  x  =  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1549    = wceq 1652    e. wcel 1725   A.wral 2705    i^i cin 3319   <.cop 3817   U.cuni 4015   class class class wbr 4212    _I cid 4493   `'ccnv 4877    |` cres 4880   Rel wrel 4883
This theorem is referenced by:  asymref2  5251  letsr  14672
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-res 4890
  Copyright terms: Public domain W3C validator