Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  atancj Unicode version

Theorem atancj 20222
 Description: The arctangent function distributes under conjugation. (The condition that is necessary because the branch cuts are chosen so that the negative imaginary line "agrees with" neighboring values with negative real part, while the positive imaginary line agrees with values with positive real part. This makes atanneg 20219 true unconditionally but messes up conjugation symmetry, and it is impossible to have both in a single-valued function. The claim is true on the imaginary line between and , though.) (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
atancj arctan arctan arctan

Proof of Theorem atancj
StepHypRef Expression
1 simpl 443 . . 3
2 simpr 447 . . . 4
3 fveq2 5541 . . . . . 6
4 ax-icn 8812 . . . . . . . 8
54renegi 11681 . . . . . . 7
6 rei 11657 . . . . . . . 8
76negeqi 9061 . . . . . . 7
8 neg0 9109 . . . . . . 7
95, 7, 83eqtri 2320 . . . . . 6
103, 9syl6eq 2344 . . . . 5
1110necon3i 2498 . . . 4
122, 11syl 15 . . 3
13 fveq2 5541 . . . . . 6
1413, 6syl6eq 2344 . . . . 5
1514necon3i 2498 . . . 4
162, 15syl 15 . . 3
17 atandm 20188 . . 3 arctan
181, 12, 16, 17syl3anbrc 1136 . 2 arctan
19 halfcl 9953 . . . . . 6
204, 19ax-mp 8 . . . . 5
21 ax-1cn 8811 . . . . . . . 8
22 mulcl 8837 . . . . . . . . 9
234, 1, 22sylancr 644 . . . . . . . 8
24 subcl 9067 . . . . . . . 8
2521, 23, 24sylancr 644 . . . . . . 7
26 atandm2 20189 . . . . . . . . 9 arctan
2718, 26sylib 188 . . . . . . . 8
2827simp2d 968 . . . . . . 7
29 logcl 19942 . . . . . . 7
3025, 28, 29syl2anc 642 . . . . . 6
31 addcl 8835 . . . . . . . 8
3221, 23, 31sylancr 644 . . . . . . 7
3327simp3d 969 . . . . . . 7
34 logcl 19942 . . . . . . 7
3532, 33, 34syl2anc 642 . . . . . 6
3630, 35subcld 9173 . . . . 5
37 cjmul 11643 . . . . 5
3820, 36, 37sylancr 644 . . . 4
39 2ne0 9845 . . . . . . . 8
40 2cn 9832 . . . . . . . . 9
414, 40cjdivi 11692 . . . . . . . 8
4239, 41ax-mp 8 . . . . . . 7
43 divneg 9471 . . . . . . . . 9
444, 40, 39, 43mp3an 1277 . . . . . . . 8
45 cji 11660 . . . . . . . . 9
46 2re 9831 . . . . . . . . . 10
47 cjre 11640 . . . . . . . . . 10
4846, 47ax-mp 8 . . . . . . . . 9
4945, 48oveq12i 5886 . . . . . . . 8
5044, 49eqtr4i 2319 . . . . . . 7
5142, 50eqtr4i 2319 . . . . . 6
5251oveq1i 5884 . . . . 5
5336cjcld 11697 . . . . . 6
54 mulneg12 9234 . . . . . 6
5520, 53, 54sylancr 644 . . . . 5
5652, 55syl5eq 2340 . . . 4
57 cjsub 11650 . . . . . . . . 9
5830, 35, 57syl2anc 642 . . . . . . . 8
59 imsub 11636 . . . . . . . . . . . . . . 15
6021, 23, 59sylancr 644 . . . . . . . . . . . . . 14
61 reim 11610 . . . . . . . . . . . . . . . 16
6261adantr 451 . . . . . . . . . . . . . . 15
6362oveq2d 5890 . . . . . . . . . . . . . 14
6460, 63eqtr4d 2331 . . . . . . . . . . . . 13
65 df-neg 9056 . . . . . . . . . . . . . 14
66 im1 11656 . . . . . . . . . . . . . . 15
6766oveq1i 5884 . . . . . . . . . . . . . 14
6865, 67eqtr4i 2319 . . . . . . . . . . . . 13
6964, 68syl6eqr 2346 . . . . . . . . . . . 12
70 recl 11611 . . . . . . . . . . . . . . 15
7170adantr 451 . . . . . . . . . . . . . 14
7271recnd 8877 . . . . . . . . . . . . 13
7372, 2negne0d 9171 . . . . . . . . . . . 12
7469, 73eqnetrd 2477 . . . . . . . . . . 11
75 logcj 19976 . . . . . . . . . . 11
7625, 74, 75syl2anc 642 . . . . . . . . . 10
77 cjsub 11650 . . . . . . . . . . . . 13
7821, 23, 77sylancr 644 . . . . . . . . . . . 12
79 1re 8853 . . . . . . . . . . . . . 14
80 cjre 11640 . . . . . . . . . . . . . 14
8179, 80mp1i 11 . . . . . . . . . . . . 13
82 cjmul 11643 . . . . . . . . . . . . . . 15
834, 1, 82sylancr 644 . . . . . . . . . . . . . 14
8445oveq1i 5884 . . . . . . . . . . . . . . 15
85 cjcl 11606 . . . . . . . . . . . . . . . . 17
8685adantr 451 . . . . . . . . . . . . . . . 16
87 mulneg1 9232 . . . . . . . . . . . . . . . 16
884, 86, 87sylancr 644 . . . . . . . . . . . . . . 15
8984, 88syl5eq 2340 . . . . . . . . . . . . . 14
9083, 89eqtrd 2328 . . . . . . . . . . . . 13
9181, 90oveq12d 5892 . . . . . . . . . . . 12
92 mulcl 8837 . . . . . . . . . . . . . 14
934, 86, 92sylancr 644 . . . . . . . . . . . . 13
94 subneg 9112 . . . . . . . . . . . . 13
9521, 93, 94sylancr 644 . . . . . . . . . . . 12
9678, 91, 953eqtrd 2332 . . . . . . . . . . 11
9796fveq2d 5545 . . . . . . . . . 10
9876, 97eqtr3d 2330 . . . . . . . . 9
99 imadd 11635 . . . . . . . . . . . . . 14
10021, 23, 99sylancr 644 . . . . . . . . . . . . 13
10162oveq2d 5890 . . . . . . . . . . . . . 14
10266oveq1i 5884 . . . . . . . . . . . . . 14
103101, 102syl6eqr 2346 . . . . . . . . . . . . 13
10472addid2d 9029 . . . . . . . . . . . . 13
105100, 103, 1043eqtr2d 2334 . . . . . . . . . . . 12
106105, 2eqnetrd 2477 . . . . . . . . . . 11
107 logcj 19976 . . . . . . . . . . 11
10832, 106, 107syl2anc 642 . . . . . . . . . 10
109 cjadd 11642 . . . . . . . . . . . . 13
11021, 23, 109sylancr 644 . . . . . . . . . . . 12
11181, 90oveq12d 5892 . . . . . . . . . . . 12
112 negsub 9111 . . . . . . . . . . . . 13
11321, 93, 112sylancr 644 . . . . . . . . . . . 12
114110, 111, 1133eqtrd 2332 . . . . . . . . . . 11
115114fveq2d 5545 . . . . . . . . . 10
116108, 115eqtr3d 2330 . . . . . . . . 9
11798, 116oveq12d 5892 . . . . . . . 8
11858, 117eqtrd 2328 . . . . . . 7
119118negeqd 9062 . . . . . 6
120 addcl 8835 . . . . . . . . 9
12121, 93, 120sylancr 644 . . . . . . . 8
122 atandmcj 20221 . . . . . . . . . 10 arctan arctan
12318, 122syl 15 . . . . . . . . 9 arctan
124 atandm2 20189 . . . . . . . . . 10 arctan
125124simp3bi 972 . . . . . . . . 9 arctan
126123, 125syl 15 . . . . . . . 8
127 logcl 19942 . . . . . . . 8
128121, 126, 127syl2anc 642 . . . . . . 7
129 subcl 9067 . . . . . . . . 9
13021, 93, 129sylancr 644 . . . . . . . 8
131124simp2bi 971 . . . . . . . . 9 arctan
132123, 131syl 15 . . . . . . . 8
133 logcl 19942 . . . . . . . 8
134130, 132, 133syl2anc 642 . . . . . . 7
135128, 134negsubdi2d 9189 . . . . . 6
136119, 135eqtrd 2328 . . . . 5
137136oveq2d 5890 . . . 4
13838, 56, 1373eqtrd 2332 . . 3
139 atanval 20196 . . . . 5 arctan arctan
14018, 139syl 15 . . . 4 arctan
141140fveq2d 5545 . . 3 arctan
142 atanval 20196 . . . 4 arctan arctan
143123, 142syl 15 . . 3 arctan
144138, 141, 1433eqtr4d 2338 . 2 arctan arctan
14518, 144jca 518 1 arctan arctan arctan
 Colors of variables: wff set class Syntax hints:   wi 4   wa 358   w3a 934   wceq 1632   wcel 1696   wne 2459   cdm 4705  cfv 5271  (class class class)co 5874  cc 8751  cr 8752  cc0 8753  c1 8754  ci 8755   caddc 8756   cmul 8758   cmin 9053  cneg 9054   cdiv 9439  c2 9811  ccj 11597  cre 11598  cim 11599  clog 19928  arctancatan 20176 This theorem is referenced by:  atanrecl  20223 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-shft 11578  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175  df-ef 12365  df-sin 12367  df-cos 12368  df-pi 12370  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-haus 17059  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-limc 19232  df-dv 19233  df-log 19930  df-atan 20179
 Copyright terms: Public domain W3C validator