MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atandm Unicode version

Theorem atandm 20188
Description: Since the property is a little lengthy, we abbreviate  A  e.  CC  /\  A  =/=  -u _i  /\  A  =/=  _i as  A  e.  dom arctan. This is the necessary precondition for the definition of arctan to make sense. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
atandm  |-  ( A  e.  dom arctan  <->  ( A  e.  CC  /\  A  =/=  -u _i  /\  A  =/= 
_i ) )

Proof of Theorem atandm
StepHypRef Expression
1 eldif 3175 . . 3  |-  ( A  e.  ( CC  \  { -u _i ,  _i } )  <->  ( A  e.  CC  /\  -.  A  e.  { -u _i ,  _i } ) )
2 elprg 3670 . . . . . 6  |-  ( A  e.  CC  ->  ( A  e.  { -u _i ,  _i }  <->  ( A  =  -u _i  \/  A  =  _i ) ) )
32notbid 285 . . . . 5  |-  ( A  e.  CC  ->  ( -.  A  e.  { -u _i ,  _i }  <->  -.  ( A  =  -u _i  \/  A  =  _i ) ) )
4 neanior 2544 . . . . 5  |-  ( ( A  =/=  -u _i  /\  A  =/=  _i ) 
<->  -.  ( A  = 
-u _i  \/  A  =  _i ) )
53, 4syl6bbr 254 . . . 4  |-  ( A  e.  CC  ->  ( -.  A  e.  { -u _i ,  _i }  <->  ( A  =/=  -u _i  /\  A  =/=  _i ) ) )
65pm5.32i 618 . . 3  |-  ( ( A  e.  CC  /\  -.  A  e.  { -u _i ,  _i }
)  <->  ( A  e.  CC  /\  ( A  =/=  -u _i  /\  A  =/=  _i ) ) )
71, 6bitri 240 . 2  |-  ( A  e.  ( CC  \  { -u _i ,  _i } )  <->  ( A  e.  CC  /\  ( A  =/=  -u _i  /\  A  =/=  _i ) ) )
8 ovex 5899 . . . 4  |-  ( ( _i  /  2 )  x.  ( ( log `  ( 1  -  (
_i  x.  x )
) )  -  ( log `  ( 1  +  ( _i  x.  x
) ) ) ) )  e.  _V
9 df-atan 20179 . . . 4  |- arctan  =  ( x  e.  ( CC 
\  { -u _i ,  _i } )  |->  ( ( _i  /  2
)  x.  ( ( log `  ( 1  -  ( _i  x.  x ) ) )  -  ( log `  (
1  +  ( _i  x.  x ) ) ) ) ) )
108, 9dmmpti 5389 . . 3  |-  dom arctan  =  ( CC  \  { -u _i ,  _i }
)
1110eleq2i 2360 . 2  |-  ( A  e.  dom arctan  <->  A  e.  ( CC  \  { -u _i ,  _i } ) )
12 3anass 938 . 2  |-  ( ( A  e.  CC  /\  A  =/=  -u _i  /\  A  =/=  _i )  <->  ( A  e.  CC  /\  ( A  =/=  -u _i  /\  A  =/=  _i ) ) )
137, 11, 123bitr4i 268 1  |-  ( A  e.  dom arctan  <->  ( A  e.  CC  /\  A  =/=  -u _i  /\  A  =/= 
_i ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459    \ cdif 3162   {cpr 3654   dom cdm 4705   ` cfv 5271  (class class class)co 5874   CCcc 8751   1c1 8754   _ici 8755    + caddc 8756    x. cmul 8758    - cmin 9053   -ucneg 9054    / cdiv 9439   2c2 9811   logclog 19928  arctancatan 20176
This theorem is referenced by:  atandm2  20189  atandm3  20190  atancj  20222  2efiatan  20230  tanatan  20231  dvatan  20247
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fn 5274  df-fv 5279  df-ov 5877  df-atan 20179
  Copyright terms: Public domain W3C validator