MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atandmtan Unicode version

Theorem atandmtan 20216
Description: The tangent function has range contained in the domain of the arctangent. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
atandmtan  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( tan `  A
)  e.  dom arctan )

Proof of Theorem atandmtan
StepHypRef Expression
1 tancl 12409 . 2  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( tan `  A
)  e.  CC )
2 tanval 12408 . . . . 5  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( tan `  A
)  =  ( ( sin `  A )  /  ( cos `  A
) ) )
32oveq1d 5873 . . . 4  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( ( tan `  A
) ^ 2 )  =  ( ( ( sin `  A )  /  ( cos `  A
) ) ^ 2 ) )
4 sincl 12406 . . . . . 6  |-  ( A  e.  CC  ->  ( sin `  A )  e.  CC )
54adantr 451 . . . . 5  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( sin `  A
)  e.  CC )
6 coscl 12407 . . . . . 6  |-  ( A  e.  CC  ->  ( cos `  A )  e.  CC )
76adantr 451 . . . . 5  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( cos `  A
)  e.  CC )
8 simpr 447 . . . . 5  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( cos `  A
)  =/=  0 )
95, 7, 8sqdivd 11258 . . . 4  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( ( ( sin `  A )  /  ( cos `  A ) ) ^ 2 )  =  ( ( ( sin `  A ) ^ 2 )  /  ( ( cos `  A ) ^ 2 ) ) )
103, 9eqtrd 2315 . . 3  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( ( tan `  A
) ^ 2 )  =  ( ( ( sin `  A ) ^ 2 )  / 
( ( cos `  A
) ^ 2 ) ) )
115sqcld 11243 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( ( sin `  A
) ^ 2 )  e.  CC )
127sqcld 11243 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( ( cos `  A
) ^ 2 )  e.  CC )
1311, 12subnegd 9164 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( ( ( sin `  A ) ^ 2 )  -  -u (
( cos `  A
) ^ 2 ) )  =  ( ( ( sin `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) ) )
14 sincossq 12456 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( ( sin `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  =  1 )
1514adantr 451 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( ( ( sin `  A ) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  =  1 )
1613, 15eqtrd 2315 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( ( ( sin `  A ) ^ 2 )  -  -u (
( cos `  A
) ^ 2 ) )  =  1 )
17 ax-1ne0 8806 . . . . . . . 8  |-  1  =/=  0
1817a1i 10 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
1  =/=  0 )
1916, 18eqnetrd 2464 . . . . . 6  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( ( ( sin `  A ) ^ 2 )  -  -u (
( cos `  A
) ^ 2 ) )  =/=  0 )
2012negcld 9144 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  ->  -u ( ( cos `  A
) ^ 2 )  e.  CC )
21 subeq0 9073 . . . . . . . 8  |-  ( ( ( ( sin `  A
) ^ 2 )  e.  CC  /\  -u (
( cos `  A
) ^ 2 )  e.  CC )  -> 
( ( ( ( sin `  A ) ^ 2 )  -  -u ( ( cos `  A
) ^ 2 ) )  =  0  <->  (
( sin `  A
) ^ 2 )  =  -u ( ( cos `  A ) ^ 2 ) ) )
2221necon3bid 2481 . . . . . . 7  |-  ( ( ( ( sin `  A
) ^ 2 )  e.  CC  /\  -u (
( cos `  A
) ^ 2 )  e.  CC )  -> 
( ( ( ( sin `  A ) ^ 2 )  -  -u ( ( cos `  A
) ^ 2 ) )  =/=  0  <->  (
( sin `  A
) ^ 2 )  =/=  -u ( ( cos `  A ) ^ 2 ) ) )
2311, 20, 22syl2anc 642 . . . . . 6  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( ( ( ( sin `  A ) ^ 2 )  -  -u ( ( cos `  A
) ^ 2 ) )  =/=  0  <->  (
( sin `  A
) ^ 2 )  =/=  -u ( ( cos `  A ) ^ 2 ) ) )
2419, 23mpbid 201 . . . . 5  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( ( sin `  A
) ^ 2 )  =/=  -u ( ( cos `  A ) ^ 2 ) )
2512mulm1d 9231 . . . . 5  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( -u 1  x.  (
( cos `  A
) ^ 2 ) )  =  -u (
( cos `  A
) ^ 2 ) )
2624, 25neeqtrrd 2470 . . . 4  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( ( sin `  A
) ^ 2 )  =/=  ( -u 1  x.  ( ( cos `  A
) ^ 2 ) ) )
27 neg1cn 9813 . . . . . . 7  |-  -u 1  e.  CC
2827a1i 10 . . . . . 6  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  ->  -u 1  e.  CC )
29 sqne0 11170 . . . . . . . 8  |-  ( ( cos `  A )  e.  CC  ->  (
( ( cos `  A
) ^ 2 )  =/=  0  <->  ( cos `  A )  =/=  0
) )
306, 29syl 15 . . . . . . 7  |-  ( A  e.  CC  ->  (
( ( cos `  A
) ^ 2 )  =/=  0  <->  ( cos `  A )  =/=  0
) )
3130biimpar 471 . . . . . 6  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( ( cos `  A
) ^ 2 )  =/=  0 )
3211, 28, 12, 31divmul3d 9570 . . . . 5  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( ( ( ( sin `  A ) ^ 2 )  / 
( ( cos `  A
) ^ 2 ) )  =  -u 1  <->  ( ( sin `  A
) ^ 2 )  =  ( -u 1  x.  ( ( cos `  A
) ^ 2 ) ) ) )
3332necon3bid 2481 . . . 4  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( ( ( ( sin `  A ) ^ 2 )  / 
( ( cos `  A
) ^ 2 ) )  =/=  -u 1  <->  ( ( sin `  A
) ^ 2 )  =/=  ( -u 1  x.  ( ( cos `  A
) ^ 2 ) ) ) )
3426, 33mpbird 223 . . 3  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( ( ( sin `  A ) ^ 2 )  /  ( ( cos `  A ) ^ 2 ) )  =/=  -u 1 )
3510, 34eqnetrd 2464 . 2  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( ( tan `  A
) ^ 2 )  =/=  -u 1 )
36 atandm3 20174 . 2  |-  ( ( tan `  A )  e.  dom arctan  <->  ( ( tan `  A )  e.  CC  /\  ( ( tan `  A
) ^ 2 )  =/=  -u 1 ) )
371, 35, 36sylanbrc 645 1  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( tan `  A
)  e.  dom arctan )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   dom cdm 4689   ` cfv 5255  (class class class)co 5858   CCcc 8735   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    - cmin 9037   -ucneg 9038    / cdiv 9423   2c2 9795   ^cexp 11104   sincsin 12345   cosccos 12346   tanctan 12347  arctancatan 20160
This theorem is referenced by:  atantan  20219
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-ico 10662  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-ef 12349  df-sin 12351  df-cos 12352  df-tan 12353  df-atan 20163
  Copyright terms: Public domain W3C validator