Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atbtwnex Structured version   Unicode version

Theorem atbtwnex 30182
Description: Given atoms  P in  X and  Q not in  X, there exists an atom  r not in  X such that the line  Q  .\/  r intersects  X at  P. (Contributed by NM, 1-Aug-2012.)
Hypotheses
Ref Expression
atbtwn.b  |-  B  =  ( Base `  K
)
atbtwn.l  |-  .<_  =  ( le `  K )
atbtwn.j  |-  .\/  =  ( join `  K )
atbtwn.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
atbtwnex  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  E. r  e.  A  ( r  =/=  Q  /\  -.  r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) )
Distinct variable groups:    A, r    B, r    K, r    .<_ , r    P, r    Q, r    X, r
Allowed substitution hint:    .\/ ( r)

Proof of Theorem atbtwnex
StepHypRef Expression
1 simpr2 964 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  P  .<_  X )
2 simpr3 965 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  -.  Q  .<_  X )
3 nbrne2 4222 . . . 4  |-  ( ( P  .<_  X  /\  -.  Q  .<_  X )  ->  P  =/=  Q
)
41, 2, 3syl2anc 643 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  P  =/=  Q )
5 atbtwn.l . . . 4  |-  .<_  =  ( le `  K )
6 atbtwn.j . . . 4  |-  .\/  =  ( join `  K )
7 atbtwn.a . . . 4  |-  A  =  ( Atoms `  K )
85, 6, 7hlsupr 30120 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  E. r  e.  A  ( r  =/=  P  /\  r  =/= 
Q  /\  r  .<_  ( P  .\/  Q ) ) )
94, 8syldan 457 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  E. r  e.  A  ( r  =/=  P  /\  r  =/= 
Q  /\  r  .<_  ( P  .\/  Q ) ) )
10 simp32 994 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  r  =/=  Q )
11 simp31 993 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  r  =/=  P )
12 simp1l 981 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A ) )
13 simp2 958 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  r  e.  A )
14 simp1r1 1053 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  X  e.  B )
15 simp1r2 1054 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  P  .<_  X )
16 simp1r3 1055 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  -.  Q  .<_  X )
17 simp33 995 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  r  .<_  ( P  .\/  Q ) )
18 atbtwn.b . . . . . . . 8  |-  B  =  ( Base `  K
)
1918, 5, 6, 7atbtwn 30180 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( r  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  r  .<_  ( P  .\/  Q ) ) )  ->  (
r  =/=  P  <->  -.  r  .<_  X ) )
2012, 13, 14, 15, 16, 17, 19syl123anc 1201 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  ( r  =/=  P  <->  -.  r  .<_  X ) )
2111, 20mpbid 202 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  -.  r  .<_  X )
22 simp1l1 1050 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  K  e.  HL )
23 simp1l2 1051 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  P  e.  A )
24 simp1l3 1052 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  Q  e.  A )
255, 6, 7hlatexch2 30130 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( r  e.  A  /\  P  e.  A  /\  Q  e.  A
)  /\  r  =/=  Q )  ->  ( r  .<_  ( P  .\/  Q
)  ->  P  .<_  ( r  .\/  Q ) ) )
2622, 13, 23, 24, 10, 25syl131anc 1197 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  ( r  .<_  ( P  .\/  Q
)  ->  P  .<_  ( r  .\/  Q ) ) )
2717, 26mpd 15 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  P  .<_  ( r  .\/  Q ) )
286, 7hlatjcom 30102 . . . . . . 7  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  r  e.  A )  ->  ( Q  .\/  r
)  =  ( r 
.\/  Q ) )
2922, 24, 13, 28syl3anc 1184 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  ( Q  .\/  r )  =  ( r  .\/  Q ) )
3027, 29breqtrrd 4230 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  P  .<_  ( Q  .\/  r ) )
3110, 21, 303jca 1134 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  ( r  =/=  Q  /\  -.  r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) )
32313exp 1152 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  ( r  e.  A  ->  ( ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P  .\/  Q
) )  ->  (
r  =/=  Q  /\  -.  r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) ) )
3332reximdvai 2808 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  ( E. r  e.  A  (
r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P  .\/  Q
) )  ->  E. r  e.  A  ( r  =/=  Q  /\  -.  r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) )
349, 33mpd 15 1  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  E. r  e.  A  ( r  =/=  Q  /\  -.  r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   E.wrex 2698   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   Basecbs 13461   lecple 13528   joincjn 14393   Atomscatm 29998   HLchlt 30085
This theorem is referenced by:  dalem19  30416
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-poset 14395  df-plt 14407  df-lub 14423  df-glb 14424  df-join 14425  df-meet 14426  df-p0 14460  df-lat 14467  df-clat 14529  df-oposet 29911  df-ol 29913  df-oml 29914  df-covers 30001  df-ats 30002  df-atl 30033  df-cvlat 30057  df-hlat 30086
  Copyright terms: Public domain W3C validator