Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atbtwnexOLDN Structured version   Unicode version

Theorem atbtwnexOLDN 30244
Description: There exists a 3rd atom  r on a line  P  .\/  Q intersecting element  X at  P, such that  r is different from  Q and not in  X. (Contributed by NM, 30-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
atbtwn.b  |-  B  =  ( Base `  K
)
atbtwn.l  |-  .<_  =  ( le `  K )
atbtwn.j  |-  .\/  =  ( join `  K )
atbtwn.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
atbtwnexOLDN  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  E. r  e.  A  ( r  =/=  Q  /\  -.  r  .<_  X  /\  r  .<_  ( P  .\/  Q ) ) )
Distinct variable groups:    A, r    B, r    K, r    .<_ , r    P, r    Q, r    X, r
Allowed substitution hint:    .\/ ( r)

Proof of Theorem atbtwnexOLDN
StepHypRef Expression
1 simpr2 964 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  P  .<_  X )
2 simpr3 965 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  -.  Q  .<_  X )
3 nbrne2 4230 . . . 4  |-  ( ( P  .<_  X  /\  -.  Q  .<_  X )  ->  P  =/=  Q
)
41, 2, 3syl2anc 643 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  P  =/=  Q )
5 atbtwn.l . . . 4  |-  .<_  =  ( le `  K )
6 atbtwn.j . . . 4  |-  .\/  =  ( join `  K )
7 atbtwn.a . . . 4  |-  A  =  ( Atoms `  K )
85, 6, 7hlsupr 30183 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  E. r  e.  A  ( r  =/=  P  /\  r  =/= 
Q  /\  r  .<_  ( P  .\/  Q ) ) )
94, 8syldan 457 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  E. r  e.  A  ( r  =/=  P  /\  r  =/= 
Q  /\  r  .<_  ( P  .\/  Q ) ) )
10 simp32 994 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  r  =/=  Q )
11 simp31 993 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  r  =/=  P )
12 simp1l 981 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A ) )
13 simp2 958 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  r  e.  A )
14 simp1r1 1053 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  X  e.  B )
15 simp1r2 1054 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  P  .<_  X )
16 simp1r3 1055 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  -.  Q  .<_  X )
17 simp33 995 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  r  .<_  ( P  .\/  Q ) )
18 atbtwn.b . . . . . . . 8  |-  B  =  ( Base `  K
)
1918, 5, 6, 7atbtwn 30243 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( r  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  r  .<_  ( P  .\/  Q ) ) )  ->  (
r  =/=  P  <->  -.  r  .<_  X ) )
2012, 13, 14, 15, 16, 17, 19syl123anc 1201 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  ( r  =/=  P  <->  -.  r  .<_  X ) )
2111, 20mpbid 202 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  -.  r  .<_  X )
2210, 21, 173jca 1134 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  ( r  =/=  Q  /\  -.  r  .<_  X  /\  r  .<_  ( P  .\/  Q ) ) )
23223exp 1152 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  ( r  e.  A  ->  ( ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P  .\/  Q
) )  ->  (
r  =/=  Q  /\  -.  r  .<_  X  /\  r  .<_  ( P  .\/  Q ) ) ) ) )
2423reximdvai 2816 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  ( E. r  e.  A  (
r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P  .\/  Q
) )  ->  E. r  e.  A  ( r  =/=  Q  /\  -.  r  .<_  X  /\  r  .<_  ( P  .\/  Q ) ) ) )
259, 24mpd 15 1  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  E. r  e.  A  ( r  =/=  Q  /\  -.  r  .<_  X  /\  r  .<_  ( P  .\/  Q ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2599   E.wrex 2706   class class class wbr 4212   ` cfv 5454  (class class class)co 6081   Basecbs 13469   lecple 13536   joincjn 14401   Atomscatm 30061   HLchlt 30148
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-undef 6543  df-riota 6549  df-poset 14403  df-plt 14415  df-lub 14431  df-glb 14432  df-join 14433  df-meet 14434  df-p0 14468  df-lat 14475  df-clat 14537  df-oposet 29974  df-ol 29976  df-oml 29977  df-covers 30064  df-ats 30065  df-atl 30096  df-cvlat 30120  df-hlat 30149
  Copyright terms: Public domain W3C validator