HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  atcvatlem Unicode version

Theorem atcvatlem 23736
Description: Lemma for atcvati 23737. (Contributed by NM, 27-Jun-2004.) (New usage is discouraged.)
Hypothesis
Ref Expression
atoml.1  |-  A  e. 
CH
Assertion
Ref Expression
atcvatlem  |-  ( ( ( B  e. HAtoms  /\  C  e. HAtoms )  /\  ( A  =/=  0H  /\  A  C.  ( B  vH  C
) ) )  -> 
( -.  B  C_  A  ->  A  e. HAtoms )
)

Proof of Theorem atcvatlem
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 atoml.1 . . . 4  |-  A  e. 
CH
21hatomici 23710 . . 3  |-  ( A  =/=  0H  ->  E. x  e. HAtoms  x  C_  A )
3 nssne2 3348 . . . . . . . . . . . . . . . . 17  |-  ( ( x  C_  A  /\  -.  B  C_  A )  ->  x  =/=  B
)
43adantrl 697 . . . . . . . . . . . . . . . 16  |-  ( ( x  C_  A  /\  ( A  C.  ( B  vH  C )  /\  -.  B  C_  A ) )  ->  x  =/=  B )
5 atnemeq0 23728 . . . . . . . . . . . . . . . 16  |-  ( ( x  e. HAtoms  /\  B  e. HAtoms
)  ->  ( x  =/=  B  <->  ( x  i^i 
B )  =  0H ) )
64, 5syl5ib 211 . . . . . . . . . . . . . . 15  |-  ( ( x  e. HAtoms  /\  B  e. HAtoms
)  ->  ( (
x  C_  A  /\  ( A  C.  ( B  vH  C )  /\  -.  B  C_  A ) )  ->  ( x  i^i  B )  =  0H ) )
7 atelch 23695 . . . . . . . . . . . . . . . 16  |-  ( x  e. HAtoms  ->  x  e.  CH )
8 cvp 23726 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CH  /\  B  e. HAtoms )  ->  ( ( x  i^i  B
)  =  0H  <->  x  <oH  ( x  vH  B ) ) )
9 atelch 23695 . . . . . . . . . . . . . . . . . . 19  |-  ( B  e. HAtoms  ->  B  e.  CH )
10 chjcom 22856 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  CH  /\  B  e.  CH )  ->  ( x  vH  B
)  =  ( B  vH  x ) )
119, 10sylan2 461 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  CH  /\  B  e. HAtoms )  ->  ( x  vH  B )  =  ( B  vH  x ) )
1211breq2d 4165 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CH  /\  B  e. HAtoms )  ->  ( x  <oH  ( x  vH  B )  <->  x  <oH  ( B  vH  x ) ) )
138, 12bitrd 245 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CH  /\  B  e. HAtoms )  ->  ( ( x  i^i  B
)  =  0H  <->  x  <oH  ( B  vH  x ) ) )
147, 13sylan 458 . . . . . . . . . . . . . . 15  |-  ( ( x  e. HAtoms  /\  B  e. HAtoms
)  ->  ( (
x  i^i  B )  =  0H  <->  x  <oH  ( B  vH  x ) ) )
156, 14sylibd 206 . . . . . . . . . . . . . 14  |-  ( ( x  e. HAtoms  /\  B  e. HAtoms
)  ->  ( (
x  C_  A  /\  ( A  C.  ( B  vH  C )  /\  -.  B  C_  A ) )  ->  x  <oH  ( B  vH  x ) ) )
1615ancoms 440 . . . . . . . . . . . . 13  |-  ( ( B  e. HAtoms  /\  x  e. HAtoms )  ->  ( (
x  C_  A  /\  ( A  C.  ( B  vH  C )  /\  -.  B  C_  A ) )  ->  x  <oH  ( B  vH  x ) ) )
1716adantlr 696 . . . . . . . . . . . 12  |-  ( ( ( B  e. HAtoms  /\  C  e. HAtoms )  /\  x  e. HAtoms
)  ->  ( (
x  C_  A  /\  ( A  C.  ( B  vH  C )  /\  -.  B  C_  A ) )  ->  x  <oH  ( B  vH  x ) ) )
1817imp 419 . . . . . . . . . . 11  |-  ( ( ( ( B  e. HAtoms  /\  C  e. HAtoms )  /\  x  e. HAtoms )  /\  (
x  C_  A  /\  ( A  C.  ( B  vH  C )  /\  -.  B  C_  A ) ) )  ->  x  <oH  ( B  vH  x
) )
19 chub1 22857 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( B  e.  CH  /\  x  e.  CH )  ->  B  C_  ( B  vH  x ) )
209, 7, 19syl2an 464 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( B  e. HAtoms  /\  x  e. HAtoms )  ->  B  C_  ( B  vH  x ) )
21203adant3 977 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( B  e. HAtoms  /\  x  e. HAtoms  /\  C  e. HAtoms )  ->  B  C_  ( B  vH  x ) )
2221adantr 452 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( B  e. HAtoms  /\  x  e. HAtoms  /\  C  e. HAtoms )  /\  ( ( x  C_  A  /\  -.  B  C_  A )  /\  A  C.  ( B  vH  C
) ) )  ->  B  C_  ( B  vH  x ) )
23 pssss 3385 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( A 
C.  ( B  vH  C )  ->  A  C_  ( B  vH  C
) )
24 sstr 3299 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( x  C_  A  /\  A  C_  ( B  vH  C ) )  ->  x  C_  ( B  vH  C ) )
2523, 24sylan2 461 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( x  C_  A  /\  A  C.  ( B  vH  C ) )  ->  x  C_  ( B  vH  C ) )
2625adantlr 696 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( x  C_  A  /\  -.  B  C_  A
)  /\  A  C.  ( B  vH  C ) )  ->  x  C_  ( B  vH  C ) )
2726adantl 453 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( B  e. HAtoms  /\  x  e. HAtoms  /\  C  e. HAtoms )  /\  ( ( x  C_  A  /\  -.  B  C_  A )  /\  A  C.  ( B  vH  C
) ) )  ->  x  C_  ( B  vH  C ) )
28 incom 3476 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( B  i^i  x )  =  ( x  i^i  B
)
293, 5syl5ib 211 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( x  e. HAtoms  /\  B  e. HAtoms
)  ->  ( (
x  C_  A  /\  -.  B  C_  A )  ->  ( x  i^i 
B )  =  0H ) )
3029ancoms 440 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( B  e. HAtoms  /\  x  e. HAtoms )  ->  ( (
x  C_  A  /\  -.  B  C_  A )  ->  ( x  i^i 
B )  =  0H ) )
31303adant3 977 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( B  e. HAtoms  /\  x  e. HAtoms  /\  C  e. HAtoms )  ->  ( ( x  C_  A  /\  -.  B  C_  A )  ->  (
x  i^i  B )  =  0H ) )
3231imp 419 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( B  e. HAtoms  /\  x  e. HAtoms  /\  C  e. HAtoms )  /\  ( x  C_  A  /\  -.  B  C_  A
) )  ->  (
x  i^i  B )  =  0H )
3328, 32syl5eq 2431 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( B  e. HAtoms  /\  x  e. HAtoms  /\  C  e. HAtoms )  /\  ( x  C_  A  /\  -.  B  C_  A
) )  ->  ( B  i^i  x )  =  0H )
3433adantrr 698 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( B  e. HAtoms  /\  x  e. HAtoms  /\  C  e. HAtoms )  /\  ( ( x  C_  A  /\  -.  B  C_  A )  /\  A  C.  ( B  vH  C
) ) )  -> 
( B  i^i  x
)  =  0H )
35 atexch 23732 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( B  e.  CH  /\  x  e. HAtoms  /\  C  e. HAtoms
)  ->  ( (
x  C_  ( B  vH  C )  /\  ( B  i^i  x )  =  0H )  ->  C  C_  ( B  vH  x
) ) )
369, 35syl3an1 1217 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( B  e. HAtoms  /\  x  e. HAtoms  /\  C  e. HAtoms )  ->  ( ( x  C_  ( B  vH  C )  /\  ( B  i^i  x )  =  0H )  ->  C  C_  ( B  vH  x ) ) )
3736adantr 452 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( B  e. HAtoms  /\  x  e. HAtoms  /\  C  e. HAtoms )  /\  ( ( x  C_  A  /\  -.  B  C_  A )  /\  A  C.  ( B  vH  C
) ) )  -> 
( ( x  C_  ( B  vH  C )  /\  ( B  i^i  x )  =  0H )  ->  C  C_  ( B  vH  x ) ) )
3827, 34, 37mp2and 661 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( B  e. HAtoms  /\  x  e. HAtoms  /\  C  e. HAtoms )  /\  ( ( x  C_  A  /\  -.  B  C_  A )  /\  A  C.  ( B  vH  C
) ) )  ->  C  C_  ( B  vH  x ) )
39 atelch 23695 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( C  e. HAtoms  ->  C  e.  CH )
40 simp1 957 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( B  e.  CH  /\  x  e.  CH  /\  C  e.  CH )  ->  B  e.  CH )
41 simp3 959 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( B  e.  CH  /\  x  e.  CH  /\  C  e.  CH )  ->  C  e.  CH )
42 chjcl 22707 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( B  e.  CH  /\  x  e.  CH )  ->  ( B  vH  x
)  e.  CH )
43423adant3 977 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( B  e.  CH  /\  x  e.  CH  /\  C  e.  CH )  ->  ( B  vH  x )  e. 
CH )
4440, 41, 433jca 1134 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( B  e.  CH  /\  x  e.  CH  /\  C  e.  CH )  ->  ( B  e.  CH  /\  C  e.  CH  /\  ( B  vH  x )  e. 
CH ) )
459, 7, 39, 44syl3an 1226 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( B  e. HAtoms  /\  x  e. HAtoms  /\  C  e. HAtoms )  ->  ( B  e.  CH  /\  C  e.  CH  /\  ( B  vH  x
)  e.  CH )
)
46 chlub 22859 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( B  e.  CH  /\  C  e.  CH  /\  ( B  vH  x )  e. 
CH )  ->  (
( B  C_  ( B  vH  x )  /\  C  C_  ( B  vH  x ) )  <->  ( B  vH  C )  C_  ( B  vH  x ) ) )
4745, 46syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( B  e. HAtoms  /\  x  e. HAtoms  /\  C  e. HAtoms )  ->  ( ( B  C_  ( B  vH  x
)  /\  C  C_  ( B  vH  x ) )  <-> 
( B  vH  C
)  C_  ( B  vH  x ) ) )
4847adantr 452 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( B  e. HAtoms  /\  x  e. HAtoms  /\  C  e. HAtoms )  /\  ( ( x  C_  A  /\  -.  B  C_  A )  /\  A  C.  ( B  vH  C
) ) )  -> 
( ( B  C_  ( B  vH  x
)  /\  C  C_  ( B  vH  x ) )  <-> 
( B  vH  C
)  C_  ( B  vH  x ) ) )
4922, 38, 48mpbi2and 888 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( B  e. HAtoms  /\  x  e. HAtoms  /\  C  e. HAtoms )  /\  ( ( x  C_  A  /\  -.  B  C_  A )  /\  A  C.  ( B  vH  C
) ) )  -> 
( B  vH  C
)  C_  ( B  vH  x ) )
50 chub1 22857 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( B  e.  CH  /\  C  e.  CH )  ->  B  C_  ( B  vH  C ) )
51503adant2 976 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( B  e.  CH  /\  x  e.  CH  /\  C  e.  CH )  ->  B  C_  ( B  vH  C
) )
5251, 26anim12i 550 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( B  e.  CH  /\  x  e.  CH  /\  C  e.  CH )  /\  ( ( x  C_  A  /\  -.  B  C_  A )  /\  A  C.  ( B  vH  C
) ) )  -> 
( B  C_  ( B  vH  C )  /\  x  C_  ( B  vH  C ) ) )
53 chjcl 22707 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( B  e.  CH  /\  C  e.  CH )  ->  ( B  vH  C
)  e.  CH )
54533adant2 976 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( B  e.  CH  /\  x  e.  CH  /\  C  e.  CH )  ->  ( B  vH  C )  e. 
CH )
55 chlub 22859 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( B  e.  CH  /\  x  e.  CH  /\  ( B  vH  C )  e. 
CH )  ->  (
( B  C_  ( B  vH  C )  /\  x  C_  ( B  vH  C ) )  <->  ( B  vH  x )  C_  ( B  vH  C ) ) )
5654, 55syld3an3 1229 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( B  e.  CH  /\  x  e.  CH  /\  C  e.  CH )  ->  (
( B  C_  ( B  vH  C )  /\  x  C_  ( B  vH  C ) )  <->  ( B  vH  x )  C_  ( B  vH  C ) ) )
5756adantr 452 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( B  e.  CH  /\  x  e.  CH  /\  C  e.  CH )  /\  ( ( x  C_  A  /\  -.  B  C_  A )  /\  A  C.  ( B  vH  C
) ) )  -> 
( ( B  C_  ( B  vH  C )  /\  x  C_  ( B  vH  C ) )  <-> 
( B  vH  x
)  C_  ( B  vH  C ) ) )
5852, 57mpbid 202 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( B  e.  CH  /\  x  e.  CH  /\  C  e.  CH )  /\  ( ( x  C_  A  /\  -.  B  C_  A )  /\  A  C.  ( B  vH  C
) ) )  -> 
( B  vH  x
)  C_  ( B  vH  C ) )
599, 7, 39, 58syl3anl 1235 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( B  e. HAtoms  /\  x  e. HAtoms  /\  C  e. HAtoms )  /\  ( ( x  C_  A  /\  -.  B  C_  A )  /\  A  C.  ( B  vH  C
) ) )  -> 
( B  vH  x
)  C_  ( B  vH  C ) )
6049, 59eqssd 3308 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( B  e. HAtoms  /\  x  e. HAtoms  /\  C  e. HAtoms )  /\  ( ( x  C_  A  /\  -.  B  C_  A )  /\  A  C.  ( B  vH  C
) ) )  -> 
( B  vH  C
)  =  ( B  vH  x ) )
6160anassrs 630 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( B  e. HAtoms  /\  x  e. HAtoms  /\  C  e. HAtoms )  /\  ( x 
C_  A  /\  -.  B  C_  A ) )  /\  A  C.  ( B  vH  C ) )  ->  ( B  vH  C )  =  ( B  vH  x ) )
6261psseq2d 3383 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( B  e. HAtoms  /\  x  e. HAtoms  /\  C  e. HAtoms )  /\  ( x 
C_  A  /\  -.  B  C_  A ) )  /\  A  C.  ( B  vH  C ) )  ->  ( A  C.  ( B  vH  C )  <-> 
A  C.  ( B  vH  x ) ) )
6362ex 424 . . . . . . . . . . . . . . . . 17  |-  ( ( ( B  e. HAtoms  /\  x  e. HAtoms  /\  C  e. HAtoms )  /\  ( x  C_  A  /\  -.  B  C_  A
) )  ->  ( A  C.  ( B  vH  C )  ->  ( A  C.  ( B  vH  C )  <->  A  C.  ( B  vH  x
) ) ) )
6463ibd 235 . . . . . . . . . . . . . . . 16  |-  ( ( ( B  e. HAtoms  /\  x  e. HAtoms  /\  C  e. HAtoms )  /\  ( x  C_  A  /\  -.  B  C_  A
) )  ->  ( A  C.  ( B  vH  C )  ->  A  C.  ( B  vH  x
) ) )
6564exp32 589 . . . . . . . . . . . . . . 15  |-  ( ( B  e. HAtoms  /\  x  e. HAtoms  /\  C  e. HAtoms )  ->  ( x  C_  A  ->  ( -.  B  C_  A  ->  ( A  C.  ( B  vH  C )  ->  A  C.  ( B  vH  x ) ) ) ) )
66653expa 1153 . . . . . . . . . . . . . 14  |-  ( ( ( B  e. HAtoms  /\  x  e. HAtoms )  /\  C  e. HAtoms
)  ->  ( x  C_  A  ->  ( -.  B  C_  A  ->  ( A  C.  ( B  vH  C )  ->  A  C.  ( B  vH  x
) ) ) ) )
6766an32s 780 . . . . . . . . . . . . 13  |-  ( ( ( B  e. HAtoms  /\  C  e. HAtoms )  /\  x  e. HAtoms
)  ->  ( x  C_  A  ->  ( -.  B  C_  A  ->  ( A  C.  ( B  vH  C )  ->  A  C.  ( B  vH  x
) ) ) ) )
6867com34 79 . . . . . . . . . . . 12  |-  ( ( ( B  e. HAtoms  /\  C  e. HAtoms )  /\  x  e. HAtoms
)  ->  ( x  C_  A  ->  ( A  C.  ( B  vH  C
)  ->  ( -.  B  C_  A  ->  A  C.  ( B  vH  x
) ) ) ) )
6968imp45 581 . . . . . . . . . . 11  |-  ( ( ( ( B  e. HAtoms  /\  C  e. HAtoms )  /\  x  e. HAtoms )  /\  (
x  C_  A  /\  ( A  C.  ( B  vH  C )  /\  -.  B  C_  A ) ) )  ->  A  C.  ( B  vH  x
) )
70 simpr 448 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  CH  /\  x  e.  CH )  ->  x  e.  CH )
7170, 42jca 519 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  CH  /\  x  e.  CH )  ->  ( x  e.  CH  /\  ( B  vH  x
)  e.  CH )
)
729, 7, 71syl2an 464 . . . . . . . . . . . . . . 15  |-  ( ( B  e. HAtoms  /\  x  e. HAtoms )  ->  ( x  e.  CH  /\  ( B  vH  x )  e. 
CH ) )
73 cvnbtwn3 23639 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  CH  /\  ( B  vH  x
)  e.  CH  /\  A  e.  CH )  ->  ( x  <oH  ( B  vH  x )  -> 
( ( x  C_  A  /\  A  C.  ( B  vH  x ) )  ->  A  =  x ) ) )
741, 73mp3an3 1268 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  CH  /\  ( B  vH  x
)  e.  CH )  ->  ( x  <oH  ( B  vH  x )  -> 
( ( x  C_  A  /\  A  C.  ( B  vH  x ) )  ->  A  =  x ) ) )
7574exp4a 590 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CH  /\  ( B  vH  x
)  e.  CH )  ->  ( x  <oH  ( B  vH  x )  -> 
( x  C_  A  ->  ( A  C.  ( B  vH  x )  ->  A  =  x )
) ) )
7675com23 74 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CH  /\  ( B  vH  x
)  e.  CH )  ->  ( x  C_  A  ->  ( x  <oH  ( B  vH  x )  -> 
( A  C.  ( B  vH  x )  ->  A  =  x )
) ) )
7776imp4a 573 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CH  /\  ( B  vH  x
)  e.  CH )  ->  ( x  C_  A  ->  ( ( x  <oH  ( B  vH  x )  /\  A  C.  ( B  vH  x ) )  ->  A  =  x ) ) )
7872, 77syl 16 . . . . . . . . . . . . . 14  |-  ( ( B  e. HAtoms  /\  x  e. HAtoms )  ->  ( x  C_  A  ->  ( (
x  <oH  ( B  vH  x )  /\  A  C.  ( B  vH  x
) )  ->  A  =  x ) ) )
7978adantlr 696 . . . . . . . . . . . . 13  |-  ( ( ( B  e. HAtoms  /\  C  e. HAtoms )  /\  x  e. HAtoms
)  ->  ( x  C_  A  ->  ( (
x  <oH  ( B  vH  x )  /\  A  C.  ( B  vH  x
) )  ->  A  =  x ) ) )
8079imp 419 . . . . . . . . . . . 12  |-  ( ( ( ( B  e. HAtoms  /\  C  e. HAtoms )  /\  x  e. HAtoms )  /\  x  C_  A )  ->  (
( x  <oH  ( B  vH  x )  /\  A  C.  ( B  vH  x ) )  ->  A  =  x )
)
8180adantrr 698 . . . . . . . . . . 11  |-  ( ( ( ( B  e. HAtoms  /\  C  e. HAtoms )  /\  x  e. HAtoms )  /\  (
x  C_  A  /\  ( A  C.  ( B  vH  C )  /\  -.  B  C_  A ) ) )  ->  (
( x  <oH  ( B  vH  x )  /\  A  C.  ( B  vH  x ) )  ->  A  =  x )
)
8218, 69, 81mp2and 661 . . . . . . . . . 10  |-  ( ( ( ( B  e. HAtoms  /\  C  e. HAtoms )  /\  x  e. HAtoms )  /\  (
x  C_  A  /\  ( A  C.  ( B  vH  C )  /\  -.  B  C_  A ) ) )  ->  A  =  x )
8382eleq1d 2453 . . . . . . . . 9  |-  ( ( ( ( B  e. HAtoms  /\  C  e. HAtoms )  /\  x  e. HAtoms )  /\  (
x  C_  A  /\  ( A  C.  ( B  vH  C )  /\  -.  B  C_  A ) ) )  ->  ( A  e. HAtoms  <->  x  e. HAtoms ) )
8483biimprcd 217 . . . . . . . 8  |-  ( x  e. HAtoms  ->  ( ( ( ( B  e. HAtoms  /\  C  e. HAtoms )  /\  x  e. HAtoms
)  /\  ( x  C_  A  /\  ( A 
C.  ( B  vH  C )  /\  -.  B  C_  A ) ) )  ->  A  e. HAtoms ) )
8584exp4c 592 . . . . . . 7  |-  ( x  e. HAtoms  ->  ( ( B  e. HAtoms  /\  C  e. HAtoms )  ->  ( x  e. HAtoms  ->  ( ( x  C_  A  /\  ( A  C.  ( B  vH  C )  /\  -.  B  C_  A ) )  ->  A  e. HAtoms ) ) ) )
8685pm2.43b 48 . . . . . 6  |-  ( ( B  e. HAtoms  /\  C  e. HAtoms
)  ->  ( x  e. HAtoms  ->  ( ( x 
C_  A  /\  ( A  C.  ( B  vH  C )  /\  -.  B  C_  A ) )  ->  A  e. HAtoms )
) )
8786imp 419 . . . . 5  |-  ( ( ( B  e. HAtoms  /\  C  e. HAtoms )  /\  x  e. HAtoms
)  ->  ( (
x  C_  A  /\  ( A  C.  ( B  vH  C )  /\  -.  B  C_  A ) )  ->  A  e. HAtoms ) )
8887exp4d 593 . . . 4  |-  ( ( ( B  e. HAtoms  /\  C  e. HAtoms )  /\  x  e. HAtoms
)  ->  ( x  C_  A  ->  ( A  C.  ( B  vH  C
)  ->  ( -.  B  C_  A  ->  A  e. HAtoms ) ) ) )
8988rexlimdva 2773 . . 3  |-  ( ( B  e. HAtoms  /\  C  e. HAtoms
)  ->  ( E. x  e. HAtoms  x  C_  A  ->  ( A  C.  ( B  vH  C )  -> 
( -.  B  C_  A  ->  A  e. HAtoms )
) ) )
902, 89syl5 30 . 2  |-  ( ( B  e. HAtoms  /\  C  e. HAtoms
)  ->  ( A  =/=  0H  ->  ( A  C.  ( B  vH  C
)  ->  ( -.  B  C_  A  ->  A  e. HAtoms ) ) ) )
9190imp32 423 1  |-  ( ( ( B  e. HAtoms  /\  C  e. HAtoms )  /\  ( A  =/=  0H  /\  A  C.  ( B  vH  C
) ) )  -> 
( -.  B  C_  A  ->  A  e. HAtoms )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2550   E.wrex 2650    i^i cin 3262    C_ wss 3263    C. wpss 3264   class class class wbr 4153  (class class class)co 6020   CHcch 22280    vH chj 22284   0Hc0h 22286    <oH ccv 22315  HAtomscat 22316
This theorem is referenced by:  atcvati  23737
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-cc 8248  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001  ax-addf 9002  ax-mulf 9003  ax-hilex 22350  ax-hfvadd 22351  ax-hvcom 22352  ax-hvass 22353  ax-hv0cl 22354  ax-hvaddid 22355  ax-hfvmul 22356  ax-hvmulid 22357  ax-hvmulass 22358  ax-hvdistr1 22359  ax-hvdistr2 22360  ax-hvmul0 22361  ax-hfi 22429  ax-his1 22432  ax-his2 22433  ax-his3 22434  ax-his4 22435  ax-hcompl 22552
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-iin 4038  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-of 6244  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-2o 6661  df-oadd 6664  df-omul 6665  df-er 6841  df-map 6956  df-pm 6957  df-ixp 7000  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-fi 7351  df-sup 7381  df-oi 7412  df-card 7759  df-acn 7762  df-cda 7981  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994  df-7 9995  df-8 9996  df-9 9997  df-10 9998  df-n0 10154  df-z 10215  df-dec 10315  df-uz 10421  df-q 10507  df-rp 10545  df-xneg 10642  df-xadd 10643  df-xmul 10644  df-ioo 10852  df-ico 10854  df-icc 10855  df-fz 10976  df-fzo 11066  df-fl 11129  df-seq 11251  df-exp 11310  df-hash 11546  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-clim 12209  df-rlim 12210  df-sum 12407  df-struct 13398  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-ress 13403  df-plusg 13469  df-mulr 13470  df-starv 13471  df-sca 13472  df-vsca 13473  df-tset 13475  df-ple 13476  df-ds 13478  df-unif 13479  df-hom 13480  df-cco 13481  df-rest 13577  df-topn 13578  df-topgen 13594  df-pt 13595  df-prds 13598  df-xrs 13653  df-0g 13654  df-gsum 13655  df-qtop 13660  df-imas 13661  df-xps 13663  df-mre 13738  df-mrc 13739  df-acs 13741  df-mnd 14617  df-submnd 14666  df-mulg 14742  df-cntz 15043  df-cmn 15341  df-xmet 16619  df-met 16620  df-bl 16621  df-mopn 16622  df-fbas 16623  df-fg 16624  df-cnfld 16627  df-top 16886  df-bases 16888  df-topon 16889  df-topsp 16890  df-cld 17006  df-ntr 17007  df-cls 17008  df-nei 17085  df-cn 17213  df-cnp 17214  df-lm 17215  df-haus 17301  df-tx 17515  df-hmeo 17708  df-fil 17799  df-fm 17891  df-flim 17892  df-flf 17893  df-xms 18259  df-ms 18260  df-tms 18261  df-cfil 19079  df-cau 19080  df-cmet 19081  df-grpo 21627  df-gid 21628  df-ginv 21629  df-gdiv 21630  df-ablo 21718  df-subgo 21738  df-vc 21873  df-nv 21919  df-va 21922  df-ba 21923  df-sm 21924  df-0v 21925  df-vs 21926  df-nmcv 21927  df-ims 21928  df-dip 22045  df-ssp 22069  df-ph 22162  df-cbn 22213  df-hnorm 22319  df-hba 22320  df-hvsub 22322  df-hlim 22323  df-hcau 22324  df-sh 22557  df-ch 22572  df-oc 22602  df-ch0 22603  df-shs 22658  df-span 22659  df-chj 22660  df-chsup 22661  df-pjh 22745  df-cv 23630  df-at 23689
  Copyright terms: Public domain W3C validator