Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvr1 Structured version   Unicode version

Theorem atcvr1 30214
Description: An atom is covered by its join with a different atom. (Contributed by NM, 7-Feb-2012.)
Hypotheses
Ref Expression
atcvr1.j  |-  .\/  =  ( join `  K )
atcvr1.c  |-  C  =  (  <o  `  K )
atcvr1.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
atcvr1  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  =/=  Q  <->  P C ( P  .\/  Q ) ) )

Proof of Theorem atcvr1
StepHypRef Expression
1 hlomcmcv 30154 . 2  |-  ( K  e.  HL  ->  ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
) )
2 atcvr1.j . . 3  |-  .\/  =  ( join `  K )
3 atcvr1.c . . 3  |-  C  =  (  <o  `  K )
4 atcvr1.a . . 3  |-  A  =  ( Atoms `  K )
52, 3, 4cvlatcvr1 30139 . 2  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  =/=  Q  <->  P C
( P  .\/  Q
) ) )
61, 5syl3an1 1217 1  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  =/=  Q  <->  P C ( P  .\/  Q ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2599   class class class wbr 4212   ` cfv 5454  (class class class)co 6081   joincjn 14401   CLatccla 14536   OMLcoml 29973    <o ccvr 30060   Atomscatm 30061   CvLatclc 30063   HLchlt 30148
This theorem is referenced by:  atcvr0eq  30223  lnnat  30224  atlt  30234  2atlt  30236  3dim0  30254  cdleme3b  31026  cdleme3c  31027  cdleme7e  31044
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-undef 6543  df-riota 6549  df-poset 14403  df-plt 14415  df-lub 14431  df-glb 14432  df-join 14433  df-meet 14434  df-p0 14468  df-lat 14475  df-clat 14537  df-oposet 29974  df-ol 29976  df-oml 29977  df-covers 30064  df-ats 30065  df-atl 30096  df-cvlat 30120  df-hlat 30149
  Copyright terms: Public domain W3C validator