Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvrlln Unicode version

Theorem atcvrlln 30014
Description: An element covering an atom is a lattice line and vice-versa. (Contributed by NM, 18-Jun-2012.)
Hypotheses
Ref Expression
atcvrlln.b  |-  B  =  ( Base `  K
)
atcvrlln.c  |-  C  =  (  <o  `  K )
atcvrlln.a  |-  A  =  ( Atoms `  K )
atcvrlln.n  |-  N  =  ( LLines `  K )
Assertion
Ref Expression
atcvrlln  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  ( X  e.  A  <->  Y  e.  N
) )

Proof of Theorem atcvrlln
Dummy variables  q  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll1 996 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  A )  ->  K  e.  HL )
2 simpll3 998 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  A )  ->  Y  e.  B )
3 simpr 448 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  A )  ->  X  e.  A )
4 simplr 732 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  A )  ->  X C Y )
5 atcvrlln.b . . . 4  |-  B  =  ( Base `  K
)
6 atcvrlln.c . . . 4  |-  C  =  (  <o  `  K )
7 atcvrlln.a . . . 4  |-  A  =  ( Atoms `  K )
8 atcvrlln.n . . . 4  |-  N  =  ( LLines `  K )
95, 6, 7, 8llni 30002 . . 3  |-  ( ( ( K  e.  HL  /\  Y  e.  B  /\  X  e.  A )  /\  X C Y )  ->  Y  e.  N
)
101, 2, 3, 4, 9syl31anc 1187 . 2  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  A )  ->  Y  e.  N )
11 simpr 448 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  N )  ->  Y  e.  N )
12 simpll1 996 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  N )  ->  K  e.  HL )
13 simpll3 998 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  N )  ->  Y  e.  B )
14 eqid 2412 . . . . . 6  |-  ( join `  K )  =  (
join `  K )
155, 14, 7, 8islln3 30004 . . . . 5  |-  ( ( K  e.  HL  /\  Y  e.  B )  ->  ( Y  e.  N  <->  E. p  e.  A  E. q  e.  A  (
p  =/=  q  /\  Y  =  ( p
( join `  K )
q ) ) ) )
1612, 13, 15syl2anc 643 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  N )  ->  ( Y  e.  N  <->  E. p  e.  A  E. q  e.  A  ( p  =/=  q  /\  Y  =  ( p ( join `  K ) q ) ) ) )
1711, 16mpbid 202 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  N )  ->  E. p  e.  A  E. q  e.  A  ( p  =/=  q  /\  Y  =  ( p ( join `  K ) q ) ) )
18 simp1l1 1050 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  (
p  e.  A  /\  q  e.  A )  /\  ( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) ) )  ->  K  e.  HL )
19 simp1l2 1051 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  (
p  e.  A  /\  q  e.  A )  /\  ( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) ) )  ->  X  e.  B )
20 simp2l 983 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  (
p  e.  A  /\  q  e.  A )  /\  ( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) ) )  ->  p  e.  A )
21 simp2r 984 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  (
p  e.  A  /\  q  e.  A )  /\  ( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) ) )  ->  q  e.  A )
22 simp3l 985 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  (
p  e.  A  /\  q  e.  A )  /\  ( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) ) )  ->  p  =/=  q )
23 simp1r 982 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  (
p  e.  A  /\  q  e.  A )  /\  ( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) ) )  ->  X C Y )
24 simp3r 986 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  (
p  e.  A  /\  q  e.  A )  /\  ( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) ) )  ->  Y  =  ( p ( join `  K ) q ) )
2523, 24breqtrd 4204 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  (
p  e.  A  /\  q  e.  A )  /\  ( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) ) )  ->  X C
( p ( join `  K ) q ) )
265, 14, 6, 7cvrat2 29923 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  p  e.  A  /\  q  e.  A
)  /\  ( p  =/=  q  /\  X C ( p ( join `  K ) q ) ) )  ->  X  e.  A )
2718, 19, 20, 21, 22, 25, 26syl132anc 1202 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  (
p  e.  A  /\  q  e.  A )  /\  ( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) ) )  ->  X  e.  A )
28273exp 1152 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  ( ( p  e.  A  /\  q  e.  A )  ->  (
( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) )  ->  X  e.  A
) ) )
2928rexlimdvv 2804 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  ( E. p  e.  A  E. q  e.  A  ( p  =/=  q  /\  Y  =  ( p ( join `  K ) q ) )  ->  X  e.  A ) )
3029adantr 452 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  N )  ->  ( E. p  e.  A  E. q  e.  A  ( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) )  ->  X  e.  A
) )
3117, 30mpd 15 . 2  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  N )  ->  X  e.  A )
3210, 31impbida 806 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  ( X  e.  A  <->  Y  e.  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2575   E.wrex 2675   class class class wbr 4180   ` cfv 5421  (class class class)co 6048   Basecbs 13432   joincjn 14364    <o ccvr 29757   Atomscatm 29758   HLchlt 29845   LLinesclln 29985
This theorem is referenced by:  llncvrlpln  30052  2llnmj  30054  2llnm2N  30062
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-undef 6510  df-riota 6516  df-poset 14366  df-plt 14378  df-lub 14394  df-glb 14395  df-join 14396  df-meet 14397  df-p0 14431  df-lat 14438  df-clat 14500  df-oposet 29671  df-ol 29673  df-oml 29674  df-covers 29761  df-ats 29762  df-atl 29793  df-cvlat 29817  df-hlat 29846  df-llines 29992
  Copyright terms: Public domain W3C validator