Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvrlln2 Unicode version

Theorem atcvrlln2 29708
Description: An atom under a line is covered by it. (Contributed by NM, 2-Jul-2012.)
Hypotheses
Ref Expression
atcvrlln2.l  |-  .<_  =  ( le `  K )
atcvrlln2.c  |-  C  =  (  <o  `  K )
atcvrlln2.a  |-  A  =  ( Atoms `  K )
atcvrlln2.n  |-  N  =  ( LLines `  K )
Assertion
Ref Expression
atcvrlln2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  N )  /\  P  .<_  X )  ->  P C X )

Proof of Theorem atcvrlln2
Dummy variables  r 
q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 960 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  N )  /\  P  .<_  X )  ->  X  e.  N
)
2 simpl1 958 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  N )  /\  P  .<_  X )  ->  K  e.  HL )
3 eqid 2283 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
4 atcvrlln2.n . . . . . 6  |-  N  =  ( LLines `  K )
53, 4llnbase 29698 . . . . 5  |-  ( X  e.  N  ->  X  e.  ( Base `  K
) )
61, 5syl 15 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  N )  /\  P  .<_  X )  ->  X  e.  (
Base `  K )
)
7 eqid 2283 . . . . 5  |-  ( join `  K )  =  (
join `  K )
8 atcvrlln2.a . . . . 5  |-  A  =  ( Atoms `  K )
93, 7, 8, 4islln3 29699 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  ( Base `  K ) )  -> 
( X  e.  N  <->  E. q  e.  A  E. r  e.  A  (
q  =/=  r  /\  X  =  ( q
( join `  K )
r ) ) ) )
102, 6, 9syl2anc 642 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  N )  /\  P  .<_  X )  ->  ( X  e.  N  <->  E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  X  =  (
q ( join `  K
) r ) ) ) )
111, 10mpbid 201 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  N )  /\  P  .<_  X )  ->  E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  X  =  (
q ( join `  K
) r ) ) )
12 simp1l1 1048 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  N )  /\  P  .<_  X )  /\  (
q  e.  A  /\  r  e.  A )  /\  ( q  =/=  r  /\  X  =  (
q ( join `  K
) r ) ) )  ->  K  e.  HL )
13 simp1l2 1049 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  N )  /\  P  .<_  X )  /\  (
q  e.  A  /\  r  e.  A )  /\  ( q  =/=  r  /\  X  =  (
q ( join `  K
) r ) ) )  ->  P  e.  A )
14 simp2l 981 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  N )  /\  P  .<_  X )  /\  (
q  e.  A  /\  r  e.  A )  /\  ( q  =/=  r  /\  X  =  (
q ( join `  K
) r ) ) )  ->  q  e.  A )
15 simp2r 982 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  N )  /\  P  .<_  X )  /\  (
q  e.  A  /\  r  e.  A )  /\  ( q  =/=  r  /\  X  =  (
q ( join `  K
) r ) ) )  ->  r  e.  A )
16 simp3l 983 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  N )  /\  P  .<_  X )  /\  (
q  e.  A  /\  r  e.  A )  /\  ( q  =/=  r  /\  X  =  (
q ( join `  K
) r ) ) )  ->  q  =/=  r )
17 simp1r 980 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  N )  /\  P  .<_  X )  /\  (
q  e.  A  /\  r  e.  A )  /\  ( q  =/=  r  /\  X  =  (
q ( join `  K
) r ) ) )  ->  P  .<_  X )
18 simp3r 984 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  N )  /\  P  .<_  X )  /\  (
q  e.  A  /\  r  e.  A )  /\  ( q  =/=  r  /\  X  =  (
q ( join `  K
) r ) ) )  ->  X  =  ( q ( join `  K ) r ) )
1917, 18breqtrd 4047 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  N )  /\  P  .<_  X )  /\  (
q  e.  A  /\  r  e.  A )  /\  ( q  =/=  r  /\  X  =  (
q ( join `  K
) r ) ) )  ->  P  .<_  ( q ( join `  K
) r ) )
20 atcvrlln2.l . . . . . . 7  |-  .<_  =  ( le `  K )
21 atcvrlln2.c . . . . . . 7  |-  C  =  (  <o  `  K )
2220, 7, 21, 8atcvrj2 29622 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  q  e.  A  /\  r  e.  A
)  /\  ( q  =/=  r  /\  P  .<_  ( q ( join `  K
) r ) ) )  ->  P C
( q ( join `  K ) r ) )
2312, 13, 14, 15, 16, 19, 22syl132anc 1200 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  N )  /\  P  .<_  X )  /\  (
q  e.  A  /\  r  e.  A )  /\  ( q  =/=  r  /\  X  =  (
q ( join `  K
) r ) ) )  ->  P C
( q ( join `  K ) r ) )
2423, 18breqtrrd 4049 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  N )  /\  P  .<_  X )  /\  (
q  e.  A  /\  r  e.  A )  /\  ( q  =/=  r  /\  X  =  (
q ( join `  K
) r ) ) )  ->  P C X )
25243exp 1150 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  N )  /\  P  .<_  X )  ->  ( ( q  e.  A  /\  r  e.  A )  ->  (
( q  =/=  r  /\  X  =  (
q ( join `  K
) r ) )  ->  P C X ) ) )
2625rexlimdvv 2673 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  N )  /\  P  .<_  X )  ->  ( E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  X  =  ( q ( join `  K ) r ) )  ->  P C X ) )
2711, 26mpd 14 1  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  N )  /\  P  .<_  X )  ->  P C X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   joincjn 14078    <o ccvr 29452   Atomscatm 29453   HLchlt 29540   LLinesclln 29680
This theorem is referenced by:  llnexatN  29710  llncmp  29711  2llnmat  29713  2llnmj  29749
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-llines 29687
  Copyright terms: Public domain W3C validator