Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  athgt Structured version   Unicode version

Theorem athgt 30190
Description: A Hilbert lattice, whose height is at least 4, has a chain of 4 successively covering atom joins. (Contributed by NM, 3-May-2012.)
Hypotheses
Ref Expression
athgt.j  |-  .\/  =  ( join `  K )
athgt.c  |-  C  =  (  <o  `  K )
athgt.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
athgt  |-  ( K  e.  HL  ->  E. p  e.  A  E. q  e.  A  ( p C ( p  .\/  q )  /\  E. r  e.  A  (
( p  .\/  q
) C ( ( p  .\/  q ) 
.\/  r )  /\  E. s  e.  A  ( ( p  .\/  q
)  .\/  r ) C ( ( ( p  .\/  q ) 
.\/  r )  .\/  s ) ) ) )
Distinct variable groups:    q, p, r, s, A    .\/ , r, s    K, p, q, r, s
Allowed substitution hints:    C( s, r, q, p)    .\/ ( q, p)

Proof of Theorem athgt
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2435 . . 3  |-  ( Base `  K )  =  (
Base `  K )
2 eqid 2435 . . 3  |-  ( lt
`  K )  =  ( lt `  K
)
3 eqid 2435 . . 3  |-  ( 0.
`  K )  =  ( 0. `  K
)
4 eqid 2435 . . 3  |-  ( 1.
`  K )  =  ( 1. `  K
)
51, 2, 3, 4hlhgt4 30122 . 2  |-  ( K  e.  HL  ->  E. x  e.  ( Base `  K
) E. y  e.  ( Base `  K
) E. z  e.  ( Base `  K
) ( ( ( 0. `  K ) ( lt `  K
) x  /\  x
( lt `  K
) y )  /\  ( y ( lt
`  K ) z  /\  z ( lt
`  K ) ( 1. `  K ) ) ) )
6 simpl1 960 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) ) )  ->  K  e.  HL )
7 hlop 30097 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  OP )
81, 3op0cl 29919 . . . . . . . . . 10  |-  ( K  e.  OP  ->  ( 0. `  K )  e.  ( Base `  K
) )
96, 7, 83syl 19 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) ) )  ->  ( 0. `  K )  e.  (
Base `  K )
)
10 simpl2l 1010 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) ) )  ->  x  e.  (
Base `  K )
)
11 simprll 739 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) ) )  ->  ( 0. `  K ) ( lt
`  K ) x )
12 eqid 2435 . . . . . . . . . 10  |-  ( le
`  K )  =  ( le `  K
)
13 athgt.j . . . . . . . . . 10  |-  .\/  =  ( join `  K )
14 athgt.c . . . . . . . . . 10  |-  C  =  (  <o  `  K )
15 athgt.a . . . . . . . . . 10  |-  A  =  ( Atoms `  K )
161, 12, 2, 13, 14, 15hlrelat3 30146 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( 0. `  K
)  e.  ( Base `  K )  /\  x  e.  ( Base `  K
) )  /\  ( 0. `  K ) ( lt `  K ) x )  ->  E. p  e.  A  ( ( 0. `  K ) C ( ( 0. `  K )  .\/  p
)  /\  ( ( 0. `  K )  .\/  p ) ( le
`  K ) x ) )
176, 9, 10, 11, 16syl31anc 1187 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) ) )  ->  E. p  e.  A  ( ( 0. `  K ) C ( ( 0. `  K
)  .\/  p )  /\  ( ( 0. `  K )  .\/  p
) ( le `  K ) x ) )
18 simp11 987 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) )  /\  p  e.  A )  ->  K  e.  HL )
19 simp3 959 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) )  /\  p  e.  A )  ->  p  e.  A )
203, 14, 15atcvr0 30023 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  p  e.  A )  ->  ( 0. `  K
) C p )
2118, 19, 20syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) )  /\  p  e.  A )  ->  ( 0. `  K
) C p )
22 hlol 30096 . . . . . . . . . . . . . . 15  |-  ( K  e.  HL  ->  K  e.  OL )
2318, 22syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) )  /\  p  e.  A )  ->  K  e.  OL )
241, 15atbase 30024 . . . . . . . . . . . . . . 15  |-  ( p  e.  A  ->  p  e.  ( Base `  K
) )
25243ad2ant3 980 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) )  /\  p  e.  A )  ->  p  e.  ( Base `  K ) )
261, 13, 3olj02 29961 . . . . . . . . . . . . . 14  |-  ( ( K  e.  OL  /\  p  e.  ( Base `  K ) )  -> 
( ( 0. `  K )  .\/  p
)  =  p )
2723, 25, 26syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) )  /\  p  e.  A )  ->  ( ( 0. `  K )  .\/  p
)  =  p )
2821, 27breqtrrd 4230 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) )  /\  p  e.  A )  ->  ( 0. `  K
) C ( ( 0. `  K ) 
.\/  p ) )
2928biantrurd 495 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) )  /\  p  e.  A )  ->  ( ( ( 0.
`  K )  .\/  p ) ( le
`  K ) x  <-> 
( ( 0. `  K ) C ( ( 0. `  K
)  .\/  p )  /\  ( ( 0. `  K )  .\/  p
) ( le `  K ) x ) ) )
3027breq1d 4214 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) )  /\  p  e.  A )  ->  ( ( ( 0.
`  K )  .\/  p ) ( le
`  K ) x  <-> 
p ( le `  K ) x ) )
3129, 30bitr3d 247 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) )  /\  p  e.  A )  ->  ( ( ( 0.
`  K ) C ( ( 0. `  K )  .\/  p
)  /\  ( ( 0. `  K )  .\/  p ) ( le
`  K ) x )  <->  p ( le
`  K ) x ) )
32313expa 1153 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
)  /\  z  e.  ( Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) ) )  /\  p  e.  A
)  ->  ( (
( 0. `  K
) C ( ( 0. `  K ) 
.\/  p )  /\  ( ( 0. `  K )  .\/  p
) ( le `  K ) x )  <-> 
p ( le `  K ) x ) )
3332rexbidva 2714 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) ) )  ->  ( E. p  e.  A  ( ( 0. `  K ) C ( ( 0. `  K )  .\/  p
)  /\  ( ( 0. `  K )  .\/  p ) ( le
`  K ) x )  <->  E. p  e.  A  p ( le `  K ) x ) )
3417, 33mpbid 202 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) ) )  ->  E. p  e.  A  p ( le `  K ) x )
35 simp11 987 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) )  /\  ( p  e.  A  /\  p ( le `  K ) x ) )  ->  K  e.  HL )
36253adant3r 1181 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) )  /\  ( p  e.  A  /\  p ( le `  K ) x ) )  ->  p  e.  ( Base `  K )
)
37 simp12r 1071 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) )  /\  ( p  e.  A  /\  p ( le `  K ) x ) )  ->  y  e.  ( Base `  K )
)
38 simp3r 986 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) )  /\  ( p  e.  A  /\  p ( le `  K ) x ) )  ->  p ( le `  K ) x )
39 simp2lr 1025 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) )  /\  ( p  e.  A  /\  p ( le `  K ) x ) )  ->  x ( lt `  K ) y )
40 hlpos 30100 . . . . . . . . . . . . . . 15  |-  ( K  e.  HL  ->  K  e.  Poset )
4135, 40syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) )  /\  ( p  e.  A  /\  p ( le `  K ) x ) )  ->  K  e.  Poset
)
42 simp12l 1070 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) )  /\  ( p  e.  A  /\  p ( le `  K ) x ) )  ->  x  e.  ( Base `  K )
)
431, 12, 2plelttr 14421 . . . . . . . . . . . . . 14  |-  ( ( K  e.  Poset  /\  (
p  e.  ( Base `  K )  /\  x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
) )  ->  (
( p ( le
`  K ) x  /\  x ( lt
`  K ) y )  ->  p ( lt `  K ) y ) )
4441, 36, 42, 37, 43syl13anc 1186 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) )  /\  ( p  e.  A  /\  p ( le `  K ) x ) )  ->  ( (
p ( le `  K ) x  /\  x ( lt `  K ) y )  ->  p ( lt
`  K ) y ) )
4538, 39, 44mp2and 661 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) )  /\  ( p  e.  A  /\  p ( le `  K ) x ) )  ->  p ( lt `  K ) y )
461, 12, 2, 13, 14, 15hlrelat3 30146 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  p  e.  ( Base `  K )  /\  y  e.  ( Base `  K
) )  /\  p
( lt `  K
) y )  ->  E. q  e.  A  ( p C ( p  .\/  q )  /\  ( p  .\/  q ) ( le
`  K ) y ) )
4735, 36, 37, 45, 46syl31anc 1187 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) )  /\  ( p  e.  A  /\  p ( le `  K ) x ) )  ->  E. q  e.  A  ( p C ( p  .\/  q )  /\  (
p  .\/  q )
( le `  K
) y ) )
48 simp11 987 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( K  e.  HL  /\  y  e.  ( Base `  K )  /\  z  e.  ( Base `  K
) )  /\  (
y ( lt `  K ) z  /\  z ( lt `  K ) ( 1.
`  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y ) )  ->  K  e.  HL )
49 hllat 30098 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( K  e.  HL  ->  K  e.  Lat )
5048, 49syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( K  e.  HL  /\  y  e.  ( Base `  K )  /\  z  e.  ( Base `  K
) )  /\  (
y ( lt `  K ) z  /\  z ( lt `  K ) ( 1.
`  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y ) )  ->  K  e.  Lat )
51 simp3ll 1028 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( K  e.  HL  /\  y  e.  ( Base `  K )  /\  z  e.  ( Base `  K
) )  /\  (
y ( lt `  K ) z  /\  z ( lt `  K ) ( 1.
`  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y ) )  ->  p  e.  A
)
5251, 24syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( K  e.  HL  /\  y  e.  ( Base `  K )  /\  z  e.  ( Base `  K
) )  /\  (
y ( lt `  K ) z  /\  z ( lt `  K ) ( 1.
`  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y ) )  ->  p  e.  (
Base `  K )
)
53 simp3lr 1029 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( K  e.  HL  /\  y  e.  ( Base `  K )  /\  z  e.  ( Base `  K
) )  /\  (
y ( lt `  K ) z  /\  z ( lt `  K ) ( 1.
`  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y ) )  ->  q  e.  A
)
541, 15atbase 30024 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( q  e.  A  ->  q  e.  ( Base `  K
) )
5553, 54syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( K  e.  HL  /\  y  e.  ( Base `  K )  /\  z  e.  ( Base `  K
) )  /\  (
y ( lt `  K ) z  /\  z ( lt `  K ) ( 1.
`  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y ) )  ->  q  e.  (
Base `  K )
)
561, 13latjcl 14471 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( K  e.  Lat  /\  p  e.  ( Base `  K )  /\  q  e.  ( Base `  K
) )  ->  (
p  .\/  q )  e.  ( Base `  K
) )
5750, 52, 55, 56syl3anc 1184 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( K  e.  HL  /\  y  e.  ( Base `  K )  /\  z  e.  ( Base `  K
) )  /\  (
y ( lt `  K ) z  /\  z ( lt `  K ) ( 1.
`  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y ) )  ->  ( p  .\/  q )  e.  (
Base `  K )
)
58 simp13 989 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( K  e.  HL  /\  y  e.  ( Base `  K )  /\  z  e.  ( Base `  K
) )  /\  (
y ( lt `  K ) z  /\  z ( lt `  K ) ( 1.
`  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y ) )  ->  z  e.  (
Base `  K )
)
59 simp3r 986 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( K  e.  HL  /\  y  e.  ( Base `  K )  /\  z  e.  ( Base `  K
) )  /\  (
y ( lt `  K ) z  /\  z ( lt `  K ) ( 1.
`  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y ) )  ->  ( p  .\/  q ) ( le
`  K ) y )
60 simp2l 983 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( K  e.  HL  /\  y  e.  ( Base `  K )  /\  z  e.  ( Base `  K
) )  /\  (
y ( lt `  K ) z  /\  z ( lt `  K ) ( 1.
`  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y ) )  ->  y ( lt
`  K ) z )
6148, 40syl 16 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( K  e.  HL  /\  y  e.  ( Base `  K )  /\  z  e.  ( Base `  K
) )  /\  (
y ( lt `  K ) z  /\  z ( lt `  K ) ( 1.
`  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y ) )  ->  K  e.  Poset )
62 simp12 988 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( K  e.  HL  /\  y  e.  ( Base `  K )  /\  z  e.  ( Base `  K
) )  /\  (
y ( lt `  K ) z  /\  z ( lt `  K ) ( 1.
`  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y ) )  ->  y  e.  (
Base `  K )
)
631, 12, 2plelttr 14421 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( K  e.  Poset  /\  (
( p  .\/  q
)  e.  ( Base `  K )  /\  y  e.  ( Base `  K
)  /\  z  e.  ( Base `  K )
) )  ->  (
( ( p  .\/  q ) ( le
`  K ) y  /\  y ( lt
`  K ) z )  ->  ( p  .\/  q ) ( lt
`  K ) z ) )
6461, 57, 62, 58, 63syl13anc 1186 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( K  e.  HL  /\  y  e.  ( Base `  K )  /\  z  e.  ( Base `  K
) )  /\  (
y ( lt `  K ) z  /\  z ( lt `  K ) ( 1.
`  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y ) )  ->  ( ( ( p  .\/  q ) ( le `  K
) y  /\  y
( lt `  K
) z )  -> 
( p  .\/  q
) ( lt `  K ) z ) )
6559, 60, 64mp2and 661 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( K  e.  HL  /\  y  e.  ( Base `  K )  /\  z  e.  ( Base `  K
) )  /\  (
y ( lt `  K ) z  /\  z ( lt `  K ) ( 1.
`  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y ) )  ->  ( p  .\/  q ) ( lt
`  K ) z )
661, 12, 2, 13, 14, 15hlrelat3 30146 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( K  e.  HL  /\  ( p  .\/  q
)  e.  ( Base `  K )  /\  z  e.  ( Base `  K
) )  /\  (
p  .\/  q )
( lt `  K
) z )  ->  E. r  e.  A  ( ( p  .\/  q ) C ( ( p  .\/  q
)  .\/  r )  /\  ( ( p  .\/  q )  .\/  r
) ( le `  K ) z ) )
6748, 57, 58, 65, 66syl31anc 1187 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( K  e.  HL  /\  y  e.  ( Base `  K )  /\  z  e.  ( Base `  K
) )  /\  (
y ( lt `  K ) z  /\  z ( lt `  K ) ( 1.
`  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y ) )  ->  E. r  e.  A  ( ( p  .\/  q ) C ( ( p  .\/  q
)  .\/  r )  /\  ( ( p  .\/  q )  .\/  r
) ( le `  K ) z ) )
68 simp1ll 1020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ( K  e.  HL  /\  z  e.  ( Base `  K
) )  /\  z
( lt `  K
) ( 1. `  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y )  /\  ( r  e.  A  /\  ( ( p  .\/  q )  .\/  r
) ( le `  K ) z ) )  ->  K  e.  HL )
6968, 49syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( ( K  e.  HL  /\  z  e.  ( Base `  K
) )  /\  z
( lt `  K
) ( 1. `  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y )  /\  ( r  e.  A  /\  ( ( p  .\/  q )  .\/  r
) ( le `  K ) z ) )  ->  K  e.  Lat )
70 simp2ll 1024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( ( ( K  e.  HL  /\  z  e.  ( Base `  K
) )  /\  z
( lt `  K
) ( 1. `  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y )  /\  ( r  e.  A  /\  ( ( p  .\/  q )  .\/  r
) ( le `  K ) z ) )  ->  p  e.  A )
7170, 24syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( ( K  e.  HL  /\  z  e.  ( Base `  K
) )  /\  z
( lt `  K
) ( 1. `  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y )  /\  ( r  e.  A  /\  ( ( p  .\/  q )  .\/  r
) ( le `  K ) z ) )  ->  p  e.  ( Base `  K )
)
72 simp2lr 1025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( ( ( K  e.  HL  /\  z  e.  ( Base `  K
) )  /\  z
( lt `  K
) ( 1. `  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y )  /\  ( r  e.  A  /\  ( ( p  .\/  q )  .\/  r
) ( le `  K ) z ) )  ->  q  e.  A )
7372, 54syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( ( K  e.  HL  /\  z  e.  ( Base `  K
) )  /\  z
( lt `  K
) ( 1. `  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y )  /\  ( r  e.  A  /\  ( ( p  .\/  q )  .\/  r
) ( le `  K ) z ) )  ->  q  e.  ( Base `  K )
)
7469, 71, 73, 56syl3anc 1184 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( ( K  e.  HL  /\  z  e.  ( Base `  K
) )  /\  z
( lt `  K
) ( 1. `  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y )  /\  ( r  e.  A  /\  ( ( p  .\/  q )  .\/  r
) ( le `  K ) z ) )  ->  ( p  .\/  q )  e.  (
Base `  K )
)
75 simp3l 985 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( ( K  e.  HL  /\  z  e.  ( Base `  K
) )  /\  z
( lt `  K
) ( 1. `  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y )  /\  ( r  e.  A  /\  ( ( p  .\/  q )  .\/  r
) ( le `  K ) z ) )  ->  r  e.  A )
761, 15atbase 30024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( r  e.  A  ->  r  e.  ( Base `  K
) )
7775, 76syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( ( K  e.  HL  /\  z  e.  ( Base `  K
) )  /\  z
( lt `  K
) ( 1. `  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y )  /\  ( r  e.  A  /\  ( ( p  .\/  q )  .\/  r
) ( le `  K ) z ) )  ->  r  e.  ( Base `  K )
)
781, 13latjcl 14471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( K  e.  Lat  /\  ( p  .\/  q )  e.  ( Base `  K
)  /\  r  e.  ( Base `  K )
)  ->  ( (
p  .\/  q )  .\/  r )  e.  (
Base `  K )
)
7969, 74, 77, 78syl3anc 1184 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ( K  e.  HL  /\  z  e.  ( Base `  K
) )  /\  z
( lt `  K
) ( 1. `  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y )  /\  ( r  e.  A  /\  ( ( p  .\/  q )  .\/  r
) ( le `  K ) z ) )  ->  ( (
p  .\/  q )  .\/  r )  e.  (
Base `  K )
)
801, 4op1cl 29920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( K  e.  OP  ->  ( 1. `  K )  e.  ( Base `  K
) )
8168, 7, 803syl 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ( K  e.  HL  /\  z  e.  ( Base `  K
) )  /\  z
( lt `  K
) ( 1. `  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y )  /\  ( r  e.  A  /\  ( ( p  .\/  q )  .\/  r
) ( le `  K ) z ) )  ->  ( 1. `  K )  e.  (
Base `  K )
)
82 simp3r 986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( ( K  e.  HL  /\  z  e.  ( Base `  K
) )  /\  z
( lt `  K
) ( 1. `  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y )  /\  ( r  e.  A  /\  ( ( p  .\/  q )  .\/  r
) ( le `  K ) z ) )  ->  ( (
p  .\/  q )  .\/  r ) ( le
`  K ) z )
83 simp1r 982 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( ( K  e.  HL  /\  z  e.  ( Base `  K
) )  /\  z
( lt `  K
) ( 1. `  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y )  /\  ( r  e.  A  /\  ( ( p  .\/  q )  .\/  r
) ( le `  K ) z ) )  ->  z ( lt `  K ) ( 1. `  K ) )
8468, 40syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( ( K  e.  HL  /\  z  e.  ( Base `  K
) )  /\  z
( lt `  K
) ( 1. `  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y )  /\  ( r  e.  A  /\  ( ( p  .\/  q )  .\/  r
) ( le `  K ) z ) )  ->  K  e.  Poset
)
85 simp1lr 1021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( ( K  e.  HL  /\  z  e.  ( Base `  K
) )  /\  z
( lt `  K
) ( 1. `  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y )  /\  ( r  e.  A  /\  ( ( p  .\/  q )  .\/  r
) ( le `  K ) z ) )  ->  z  e.  ( Base `  K )
)
861, 12, 2plelttr 14421 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( K  e.  Poset  /\  (
( ( p  .\/  q )  .\/  r
)  e.  ( Base `  K )  /\  z  e.  ( Base `  K
)  /\  ( 1. `  K )  e.  (
Base `  K )
) )  ->  (
( ( ( p 
.\/  q )  .\/  r ) ( le
`  K ) z  /\  z ( lt
`  K ) ( 1. `  K ) )  ->  ( (
p  .\/  q )  .\/  r ) ( lt
`  K ) ( 1. `  K ) ) )
8784, 79, 85, 81, 86syl13anc 1186 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( ( K  e.  HL  /\  z  e.  ( Base `  K
) )  /\  z
( lt `  K
) ( 1. `  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y )  /\  ( r  e.  A  /\  ( ( p  .\/  q )  .\/  r
) ( le `  K ) z ) )  ->  ( (
( ( p  .\/  q )  .\/  r
) ( le `  K ) z  /\  z ( lt `  K ) ( 1.
`  K ) )  ->  ( ( p 
.\/  q )  .\/  r ) ( lt
`  K ) ( 1. `  K ) ) )
8882, 83, 87mp2and 661 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ( K  e.  HL  /\  z  e.  ( Base `  K
) )  /\  z
( lt `  K
) ( 1. `  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y )  /\  ( r  e.  A  /\  ( ( p  .\/  q )  .\/  r
) ( le `  K ) z ) )  ->  ( (
p  .\/  q )  .\/  r ) ( lt
`  K ) ( 1. `  K ) )
891, 12, 2, 13, 14, 15hlrelat3 30146 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( K  e.  HL  /\  ( ( p  .\/  q )  .\/  r
)  e.  ( Base `  K )  /\  ( 1. `  K )  e.  ( Base `  K
) )  /\  (
( p  .\/  q
)  .\/  r )
( lt `  K
) ( 1. `  K ) )  ->  E. s  e.  A  ( ( ( p 
.\/  q )  .\/  r ) C ( ( ( p  .\/  q )  .\/  r
)  .\/  s )  /\  ( ( ( p 
.\/  q )  .\/  r )  .\/  s
) ( le `  K ) ( 1.
`  K ) ) )
9068, 79, 81, 88, 89syl31anc 1187 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( K  e.  HL  /\  z  e.  ( Base `  K
) )  /\  z
( lt `  K
) ( 1. `  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y )  /\  ( r  e.  A  /\  ( ( p  .\/  q )  .\/  r
) ( le `  K ) z ) )  ->  E. s  e.  A  ( (
( p  .\/  q
)  .\/  r ) C ( ( ( p  .\/  q ) 
.\/  r )  .\/  s )  /\  (
( ( p  .\/  q )  .\/  r
)  .\/  s )
( le `  K
) ( 1. `  K ) ) )
91 simpl 444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ( p  .\/  q )  .\/  r
) C ( ( ( p  .\/  q
)  .\/  r )  .\/  s )  /\  (
( ( p  .\/  q )  .\/  r
)  .\/  s )
( le `  K
) ( 1. `  K ) )  -> 
( ( p  .\/  q )  .\/  r
) C ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) )
9291reximi 2805 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( E. s  e.  A  ( ( ( p  .\/  q )  .\/  r
) C ( ( ( p  .\/  q
)  .\/  r )  .\/  s )  /\  (
( ( p  .\/  q )  .\/  r
)  .\/  s )
( le `  K
) ( 1. `  K ) )  ->  E. s  e.  A  ( ( p  .\/  q )  .\/  r
) C ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) )
9390, 92syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( K  e.  HL  /\  z  e.  ( Base `  K
) )  /\  z
( lt `  K
) ( 1. `  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y )  /\  ( r  e.  A  /\  ( ( p  .\/  q )  .\/  r
) ( le `  K ) z ) )  ->  E. s  e.  A  ( (
p  .\/  q )  .\/  r ) C ( ( ( p  .\/  q )  .\/  r
)  .\/  s )
)
94933exp 1152 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( K  e.  HL  /\  z  e.  ( Base `  K ) )  /\  z ( lt `  K ) ( 1.
`  K ) )  ->  ( ( ( p  e.  A  /\  q  e.  A )  /\  ( p  .\/  q
) ( le `  K ) y )  ->  ( ( r  e.  A  /\  (
( p  .\/  q
)  .\/  r )
( le `  K
) z )  ->  E. s  e.  A  ( ( p  .\/  q )  .\/  r
) C ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) ) )
9594exp4a 590 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( K  e.  HL  /\  z  e.  ( Base `  K ) )  /\  z ( lt `  K ) ( 1.
`  K ) )  ->  ( ( ( p  e.  A  /\  q  e.  A )  /\  ( p  .\/  q
) ( le `  K ) y )  ->  ( r  e.  A  ->  ( (
( p  .\/  q
)  .\/  r )
( le `  K
) z  ->  E. s  e.  A  ( (
p  .\/  q )  .\/  r ) C ( ( ( p  .\/  q )  .\/  r
)  .\/  s )
) ) ) )
9695ex 424 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( K  e.  HL  /\  z  e.  ( Base `  K ) )  -> 
( z ( lt
`  K ) ( 1. `  K )  ->  ( ( ( p  e.  A  /\  q  e.  A )  /\  ( p  .\/  q
) ( le `  K ) y )  ->  ( r  e.  A  ->  ( (
( p  .\/  q
)  .\/  r )
( le `  K
) z  ->  E. s  e.  A  ( (
p  .\/  q )  .\/  r ) C ( ( ( p  .\/  q )  .\/  r
)  .\/  s )
) ) ) ) )
97963adant2 976 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( K  e.  HL  /\  y  e.  ( Base `  K )  /\  z  e.  ( Base `  K
) )  ->  (
z ( lt `  K ) ( 1.
`  K )  -> 
( ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y )  -> 
( r  e.  A  ->  ( ( ( p 
.\/  q )  .\/  r ) ( le
`  K ) z  ->  E. s  e.  A  ( ( p  .\/  q )  .\/  r
) C ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) ) ) ) )
98973imp 1147 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( K  e.  HL  /\  y  e.  ( Base `  K )  /\  z  e.  ( Base `  K
) )  /\  z
( lt `  K
) ( 1. `  K )  /\  (
( p  e.  A  /\  q  e.  A
)  /\  ( p  .\/  q ) ( le
`  K ) y ) )  ->  (
r  e.  A  -> 
( ( ( p 
.\/  q )  .\/  r ) ( le
`  K ) z  ->  E. s  e.  A  ( ( p  .\/  q )  .\/  r
) C ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) ) )
99983adant2l 1178 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( K  e.  HL  /\  y  e.  ( Base `  K )  /\  z  e.  ( Base `  K
) )  /\  (
y ( lt `  K ) z  /\  z ( lt `  K ) ( 1.
`  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y ) )  ->  ( r  e.  A  ->  ( (
( p  .\/  q
)  .\/  r )
( le `  K
) z  ->  E. s  e.  A  ( (
p  .\/  q )  .\/  r ) C ( ( ( p  .\/  q )  .\/  r
)  .\/  s )
) ) )
10099imp 419 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( K  e.  HL  /\  y  e.  ( Base `  K
)  /\  z  e.  ( Base `  K )
)  /\  ( y
( lt `  K
) z  /\  z
( lt `  K
) ( 1. `  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y ) )  /\  r  e.  A
)  ->  ( (
( p  .\/  q
)  .\/  r )
( le `  K
) z  ->  E. s  e.  A  ( (
p  .\/  q )  .\/  r ) C ( ( ( p  .\/  q )  .\/  r
)  .\/  s )
) )
101100anim2d 549 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( K  e.  HL  /\  y  e.  ( Base `  K
)  /\  z  e.  ( Base `  K )
)  /\  ( y
( lt `  K
) z  /\  z
( lt `  K
) ( 1. `  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y ) )  /\  r  e.  A
)  ->  ( (
( p  .\/  q
) C ( ( p  .\/  q ) 
.\/  r )  /\  ( ( p  .\/  q )  .\/  r
) ( le `  K ) z )  ->  ( ( p 
.\/  q ) C ( ( p  .\/  q )  .\/  r
)  /\  E. s  e.  A  ( (
p  .\/  q )  .\/  r ) C ( ( ( p  .\/  q )  .\/  r
)  .\/  s )
) ) )
102101reximdva 2810 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( K  e.  HL  /\  y  e.  ( Base `  K )  /\  z  e.  ( Base `  K
) )  /\  (
y ( lt `  K ) z  /\  z ( lt `  K ) ( 1.
`  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y ) )  ->  ( E. r  e.  A  ( (
p  .\/  q ) C ( ( p 
.\/  q )  .\/  r )  /\  (
( p  .\/  q
)  .\/  r )
( le `  K
) z )  ->  E. r  e.  A  ( ( p  .\/  q ) C ( ( p  .\/  q
)  .\/  r )  /\  E. s  e.  A  ( ( p  .\/  q )  .\/  r
) C ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) ) )
10367, 102mpd 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( K  e.  HL  /\  y  e.  ( Base `  K )  /\  z  e.  ( Base `  K
) )  /\  (
y ( lt `  K ) z  /\  z ( lt `  K ) ( 1.
`  K ) )  /\  ( ( p  e.  A  /\  q  e.  A )  /\  (
p  .\/  q )
( le `  K
) y ) )  ->  E. r  e.  A  ( ( p  .\/  q ) C ( ( p  .\/  q
)  .\/  r )  /\  E. s  e.  A  ( ( p  .\/  q )  .\/  r
) C ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) )
1041033exp 1152 . . . . . . . . . . . . . . . . . . 19  |-  ( ( K  e.  HL  /\  y  e.  ( Base `  K )  /\  z  e.  ( Base `  K
) )  ->  (
( y ( lt
`  K ) z  /\  z ( lt
`  K ) ( 1. `  K ) )  ->  ( (
( p  e.  A  /\  q  e.  A
)  /\  ( p  .\/  q ) ( le
`  K ) y )  ->  E. r  e.  A  ( (
p  .\/  q ) C ( ( p 
.\/  q )  .\/  r )  /\  E. s  e.  A  (
( p  .\/  q
)  .\/  r ) C ( ( ( p  .\/  q ) 
.\/  r )  .\/  s ) ) ) ) )
105104exp4a 590 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  HL  /\  y  e.  ( Base `  K )  /\  z  e.  ( Base `  K
) )  ->  (
( y ( lt
`  K ) z  /\  z ( lt
`  K ) ( 1. `  K ) )  ->  ( (
p  e.  A  /\  q  e.  A )  ->  ( ( p  .\/  q ) ( le
`  K ) y  ->  E. r  e.  A  ( ( p  .\/  q ) C ( ( p  .\/  q
)  .\/  r )  /\  E. s  e.  A  ( ( p  .\/  q )  .\/  r
) C ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) ) ) ) )
106105exp4a 590 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  HL  /\  y  e.  ( Base `  K )  /\  z  e.  ( Base `  K
) )  ->  (
( y ( lt
`  K ) z  /\  z ( lt
`  K ) ( 1. `  K ) )  ->  ( p  e.  A  ->  ( q  e.  A  ->  (
( p  .\/  q
) ( le `  K ) y  ->  E. r  e.  A  ( ( p  .\/  q ) C ( ( p  .\/  q
)  .\/  r )  /\  E. s  e.  A  ( ( p  .\/  q )  .\/  r
) C ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) ) ) ) ) )
1071063adant2l 1178 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  HL  /\  ( x  e.  ( Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  ( Base `  K ) )  -> 
( ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) )  ->  (
p  e.  A  -> 
( q  e.  A  ->  ( ( p  .\/  q ) ( le
`  K ) y  ->  E. r  e.  A  ( ( p  .\/  q ) C ( ( p  .\/  q
)  .\/  r )  /\  E. s  e.  A  ( ( p  .\/  q )  .\/  r
) C ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) ) ) ) ) )
1081073imp1 1166 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
)  /\  z  e.  ( Base `  K )
)  /\  ( y
( lt `  K
) z  /\  z
( lt `  K
) ( 1. `  K ) )  /\  p  e.  A )  /\  q  e.  A
)  ->  ( (
p  .\/  q )
( le `  K
) y  ->  E. r  e.  A  ( (
p  .\/  q ) C ( ( p 
.\/  q )  .\/  r )  /\  E. s  e.  A  (
( p  .\/  q
)  .\/  r ) C ( ( ( p  .\/  q ) 
.\/  r )  .\/  s ) ) ) )
109108anim2d 549 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
)  /\  z  e.  ( Base `  K )
)  /\  ( y
( lt `  K
) z  /\  z
( lt `  K
) ( 1. `  K ) )  /\  p  e.  A )  /\  q  e.  A
)  ->  ( (
p C ( p 
.\/  q )  /\  ( p  .\/  q ) ( le `  K
) y )  -> 
( p C ( p  .\/  q )  /\  E. r  e.  A  ( ( p 
.\/  q ) C ( ( p  .\/  q )  .\/  r
)  /\  E. s  e.  A  ( (
p  .\/  q )  .\/  r ) C ( ( ( p  .\/  q )  .\/  r
)  .\/  s )
) ) ) )
110109reximdva 2810 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( y
( lt `  K
) z  /\  z
( lt `  K
) ( 1. `  K ) )  /\  p  e.  A )  ->  ( E. q  e.  A  ( p C ( p  .\/  q
)  /\  ( p  .\/  q ) ( le
`  K ) y )  ->  E. q  e.  A  ( p C ( p  .\/  q )  /\  E. r  e.  A  (
( p  .\/  q
) C ( ( p  .\/  q ) 
.\/  r )  /\  E. s  e.  A  ( ( p  .\/  q
)  .\/  r ) C ( ( ( p  .\/  q ) 
.\/  r )  .\/  s ) ) ) ) )
1111103adant2l 1178 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) )  /\  p  e.  A )  ->  ( E. q  e.  A  ( p C ( p  .\/  q
)  /\  ( p  .\/  q ) ( le
`  K ) y )  ->  E. q  e.  A  ( p C ( p  .\/  q )  /\  E. r  e.  A  (
( p  .\/  q
) C ( ( p  .\/  q ) 
.\/  r )  /\  E. s  e.  A  ( ( p  .\/  q
)  .\/  r ) C ( ( ( p  .\/  q ) 
.\/  r )  .\/  s ) ) ) ) )
1121113adant3r 1181 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) )  /\  ( p  e.  A  /\  p ( le `  K ) x ) )  ->  ( E. q  e.  A  (
p C ( p 
.\/  q )  /\  ( p  .\/  q ) ( le `  K
) y )  ->  E. q  e.  A  ( p C ( p  .\/  q )  /\  E. r  e.  A  ( ( p 
.\/  q ) C ( ( p  .\/  q )  .\/  r
)  /\  E. s  e.  A  ( (
p  .\/  q )  .\/  r ) C ( ( ( p  .\/  q )  .\/  r
)  .\/  s )
) ) ) )
11347, 112mpd 15 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) )  /\  ( p  e.  A  /\  p ( le `  K ) x ) )  ->  E. q  e.  A  ( p C ( p  .\/  q )  /\  E. r  e.  A  (
( p  .\/  q
) C ( ( p  .\/  q ) 
.\/  r )  /\  E. s  e.  A  ( ( p  .\/  q
)  .\/  r ) C ( ( ( p  .\/  q ) 
.\/  r )  .\/  s ) ) ) )
1141133expia 1155 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) ) )  ->  ( ( p  e.  A  /\  p
( le `  K
) x )  ->  E. q  e.  A  ( p C ( p  .\/  q )  /\  E. r  e.  A  ( ( p 
.\/  q ) C ( ( p  .\/  q )  .\/  r
)  /\  E. s  e.  A  ( (
p  .\/  q )  .\/  r ) C ( ( ( p  .\/  q )  .\/  r
)  .\/  s )
) ) ) )
115114exp3a 426 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) ) )  ->  ( p  e.  A  ->  ( p
( le `  K
) x  ->  E. q  e.  A  ( p C ( p  .\/  q )  /\  E. r  e.  A  (
( p  .\/  q
) C ( ( p  .\/  q ) 
.\/  r )  /\  E. s  e.  A  ( ( p  .\/  q
)  .\/  r ) C ( ( ( p  .\/  q ) 
.\/  r )  .\/  s ) ) ) ) ) )
116115reximdvai 2808 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) ) )  ->  ( E. p  e.  A  p ( le `  K ) x  ->  E. p  e.  A  E. q  e.  A  ( p C ( p  .\/  q )  /\  E. r  e.  A  ( ( p 
.\/  q ) C ( ( p  .\/  q )  .\/  r
)  /\  E. s  e.  A  ( (
p  .\/  q )  .\/  r ) C ( ( ( p  .\/  q )  .\/  r
)  .\/  s )
) ) ) )
11734, 116mpd 15 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  e.  (
Base `  K )
)  /\  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) ) )  ->  E. p  e.  A  E. q  e.  A  ( p C ( p  .\/  q )  /\  E. r  e.  A  ( ( p 
.\/  q ) C ( ( p  .\/  q )  .\/  r
)  /\  E. s  e.  A  ( (
p  .\/  q )  .\/  r ) C ( ( ( p  .\/  q )  .\/  r
)  .\/  s )
) ) )
1181173exp1 1169 . . . . 5  |-  ( K  e.  HL  ->  (
( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  ->  ( z  e.  ( Base `  K
)  ->  ( (
( ( 0. `  K ) ( lt
`  K ) x  /\  x ( lt
`  K ) y )  /\  ( y ( lt `  K
) z  /\  z
( lt `  K
) ( 1. `  K ) ) )  ->  E. p  e.  A  E. q  e.  A  ( p C ( p  .\/  q )  /\  E. r  e.  A  ( ( p 
.\/  q ) C ( ( p  .\/  q )  .\/  r
)  /\  E. s  e.  A  ( (
p  .\/  q )  .\/  r ) C ( ( ( p  .\/  q )  .\/  r
)  .\/  s )
) ) ) ) ) )
119118imp 419 . . . 4  |-  ( ( K  e.  HL  /\  ( x  e.  ( Base `  K )  /\  y  e.  ( Base `  K ) ) )  ->  ( z  e.  ( Base `  K
)  ->  ( (
( ( 0. `  K ) ( lt
`  K ) x  /\  x ( lt
`  K ) y )  /\  ( y ( lt `  K
) z  /\  z
( lt `  K
) ( 1. `  K ) ) )  ->  E. p  e.  A  E. q  e.  A  ( p C ( p  .\/  q )  /\  E. r  e.  A  ( ( p 
.\/  q ) C ( ( p  .\/  q )  .\/  r
)  /\  E. s  e.  A  ( (
p  .\/  q )  .\/  r ) C ( ( ( p  .\/  q )  .\/  r
)  .\/  s )
) ) ) ) )
120119rexlimdv 2821 . . 3  |-  ( ( K  e.  HL  /\  ( x  e.  ( Base `  K )  /\  y  e.  ( Base `  K ) ) )  ->  ( E. z  e.  ( Base `  K
) ( ( ( 0. `  K ) ( lt `  K
) x  /\  x
( lt `  K
) y )  /\  ( y ( lt
`  K ) z  /\  z ( lt
`  K ) ( 1. `  K ) ) )  ->  E. p  e.  A  E. q  e.  A  ( p C ( p  .\/  q )  /\  E. r  e.  A  (
( p  .\/  q
) C ( ( p  .\/  q ) 
.\/  r )  /\  E. s  e.  A  ( ( p  .\/  q
)  .\/  r ) C ( ( ( p  .\/  q ) 
.\/  r )  .\/  s ) ) ) ) )
121120rexlimdvva 2829 . 2  |-  ( K  e.  HL  ->  ( E. x  e.  ( Base `  K ) E. y  e.  ( Base `  K ) E. z  e.  ( Base `  K
) ( ( ( 0. `  K ) ( lt `  K
) x  /\  x
( lt `  K
) y )  /\  ( y ( lt
`  K ) z  /\  z ( lt
`  K ) ( 1. `  K ) ) )  ->  E. p  e.  A  E. q  e.  A  ( p C ( p  .\/  q )  /\  E. r  e.  A  (
( p  .\/  q
) C ( ( p  .\/  q ) 
.\/  r )  /\  E. s  e.  A  ( ( p  .\/  q
)  .\/  r ) C ( ( ( p  .\/  q ) 
.\/  r )  .\/  s ) ) ) ) )
1225, 121mpd 15 1  |-  ( K  e.  HL  ->  E. p  e.  A  E. q  e.  A  ( p C ( p  .\/  q )  /\  E. r  e.  A  (
( p  .\/  q
) C ( ( p  .\/  q ) 
.\/  r )  /\  E. s  e.  A  ( ( p  .\/  q
)  .\/  r ) C ( ( ( p  .\/  q ) 
.\/  r )  .\/  s ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   E.wrex 2698   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   Basecbs 13461   lecple 13528   Posetcpo 14389   ltcplt 14390   joincjn 14393   0.cp0 14458   1.cp1 14459   Latclat 14466   OPcops 29907   OLcol 29909    <o ccvr 29997   Atomscatm 29998   HLchlt 30085
This theorem is referenced by:  3dim0  30191
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-poset 14395  df-plt 14407  df-lub 14423  df-glb 14424  df-join 14425  df-meet 14426  df-p0 14460  df-lat 14467  df-clat 14529  df-oposet 29911  df-ol 29913  df-oml 29914  df-covers 30001  df-ats 30002  df-atl 30033  df-cvlat 30057  df-hlat 30086
  Copyright terms: Public domain W3C validator