Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlatle Structured version   Unicode version

Theorem atlatle 30192
Description: The ordering of two Hilbert lattice elements is determined by the atoms under them. (chrelat3 23879 analog.) (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
atlatle.b  |-  B  =  ( Base `  K
)
atlatle.l  |-  .<_  =  ( le `  K )
atlatle.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
atlatle  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  A. p  e.  A  ( p  .<_  X  ->  p  .<_  Y ) ) )
Distinct variable groups:    A, p    B, p    K, p    .<_ , p    X, p    Y, p

Proof of Theorem atlatle
StepHypRef Expression
1 simpl13 1035 . . . . . 6  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  K  e.  AtLat
)
2 atlpos 30173 . . . . . 6  |-  ( K  e.  AtLat  ->  K  e.  Poset
)
31, 2syl 16 . . . . 5  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  K  e.  Poset
)
4 atlatle.b . . . . . . 7  |-  B  =  ( Base `  K
)
5 atlatle.a . . . . . . 7  |-  A  =  ( Atoms `  K )
64, 5atbase 30161 . . . . . 6  |-  ( p  e.  A  ->  p  e.  B )
76adantl 454 . . . . 5  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  p  e.  B )
8 simpl2 962 . . . . 5  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  X  e.  B )
9 simpl3 963 . . . . 5  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  Y  e.  B )
10 atlatle.l . . . . . 6  |-  .<_  =  ( le `  K )
114, 10postr 14415 . . . . 5  |-  ( ( K  e.  Poset  /\  (
p  e.  B  /\  X  e.  B  /\  Y  e.  B )
)  ->  ( (
p  .<_  X  /\  X  .<_  Y )  ->  p  .<_  Y ) )
123, 7, 8, 9, 11syl13anc 1187 . . . 4  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( (
p  .<_  X  /\  X  .<_  Y )  ->  p  .<_  Y ) )
1312exp3acom23 1382 . . 3  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( X  .<_  Y  ->  ( p  .<_  X  ->  p  .<_  Y ) ) )
1413ralrimdva 2798 . 2  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  ->  A. p  e.  A  ( p  .<_  X  ->  p  .<_  Y ) ) )
15 ss2rab 3421 . . 3  |-  ( { p  e.  A  |  p  .<_  X }  C_  { p  e.  A  |  p  .<_  Y }  <->  A. p  e.  A  ( p  .<_  X  ->  p  .<_  Y ) )
16 simpl12 1034 . . . . . 6  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  /\  { p  e.  A  |  p  .<_  X }  C_ 
{ p  e.  A  |  p  .<_  Y }
)  ->  K  e.  CLat )
17 ssrab2 3430 . . . . . . . 8  |-  { p  e.  A  |  p  .<_  Y }  C_  A
184, 5atssbase 30162 . . . . . . . 8  |-  A  C_  B
1917, 18sstri 3359 . . . . . . 7  |-  { p  e.  A  |  p  .<_  Y }  C_  B
20 eqid 2438 . . . . . . . 8  |-  ( lub `  K )  =  ( lub `  K )
214, 10, 20lubss 14553 . . . . . . 7  |-  ( ( K  e.  CLat  /\  {
p  e.  A  |  p  .<_  Y }  C_  B  /\  { p  e.  A  |  p  .<_  X }  C_  { p  e.  A  |  p  .<_  Y } )  -> 
( ( lub `  K
) `  { p  e.  A  |  p  .<_  X } )  .<_  ( ( lub `  K
) `  { p  e.  A  |  p  .<_  Y } ) )
2219, 21mp3an2 1268 . . . . . 6  |-  ( ( K  e.  CLat  /\  {
p  e.  A  |  p  .<_  X }  C_  { p  e.  A  |  p  .<_  Y } )  ->  ( ( lub `  K ) `  {
p  e.  A  |  p  .<_  X } ) 
.<_  ( ( lub `  K
) `  { p  e.  A  |  p  .<_  Y } ) )
2316, 22sylancom 650 . . . . 5  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  /\  { p  e.  A  |  p  .<_  X }  C_ 
{ p  e.  A  |  p  .<_  Y }
)  ->  ( ( lub `  K ) `  { p  e.  A  |  p  .<_  X }
)  .<_  ( ( lub `  K ) `  {
p  e.  A  |  p  .<_  Y } ) )
2423ex 425 . . . 4  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  ->  ( { p  e.  A  |  p  .<_  X }  C_ 
{ p  e.  A  |  p  .<_  Y }  ->  ( ( lub `  K
) `  { p  e.  A  |  p  .<_  X } )  .<_  ( ( lub `  K
) `  { p  e.  A  |  p  .<_  Y } ) ) )
254, 10, 20, 5atlatmstc 30191 . . . . . 6  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  ->  (
( lub `  K
) `  { p  e.  A  |  p  .<_  X } )  =  X )
26253adant3 978 . . . . 5  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  ->  (
( lub `  K
) `  { p  e.  A  |  p  .<_  X } )  =  X )
274, 10, 20, 5atlatmstc 30191 . . . . . 6  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  Y  e.  B )  ->  (
( lub `  K
) `  { p  e.  A  |  p  .<_  Y } )  =  Y )
28273adant2 977 . . . . 5  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  ->  (
( lub `  K
) `  { p  e.  A  |  p  .<_  Y } )  =  Y )
2926, 28breq12d 4228 . . . 4  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( lub `  K
) `  { p  e.  A  |  p  .<_  X } )  .<_  ( ( lub `  K
) `  { p  e.  A  |  p  .<_  Y } )  <->  X  .<_  Y ) )
3024, 29sylibd 207 . . 3  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  ->  ( { p  e.  A  |  p  .<_  X }  C_ 
{ p  e.  A  |  p  .<_  Y }  ->  X  .<_  Y )
)
3115, 30syl5bir 211 . 2  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  ->  ( A. p  e.  A  ( p  .<_  X  ->  p  .<_  Y )  ->  X  .<_  Y ) )
3214, 31impbid 185 1  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  A. p  e.  A  ( p  .<_  X  ->  p  .<_  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707   {crab 2711    C_ wss 3322   class class class wbr 4215   ` cfv 5457   Basecbs 13474   lecple 13541   Posetcpo 14402   lubclub 14404   CLatccla 14541   OMLcoml 30047   Atomscatm 30135   AtLatcal 30136
This theorem is referenced by:  atlrelat1  30193  hlatle  30269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-undef 6546  df-riota 6552  df-poset 14408  df-plt 14420  df-lub 14436  df-glb 14437  df-join 14438  df-meet 14439  df-p0 14473  df-lat 14480  df-clat 14542  df-oposet 30048  df-ol 30050  df-oml 30051  df-covers 30138  df-ats 30139  df-atl 30170
  Copyright terms: Public domain W3C validator