Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlatle Structured version   Unicode version

Theorem atlatle 30055
Description: The ordering of two Hilbert lattice elements is determined by the atoms under them. (chrelat3 23866 analog.) (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
atlatle.b  |-  B  =  ( Base `  K
)
atlatle.l  |-  .<_  =  ( le `  K )
atlatle.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
atlatle  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  A. p  e.  A  ( p  .<_  X  ->  p  .<_  Y ) ) )
Distinct variable groups:    A, p    B, p    K, p    .<_ , p    X, p    Y, p

Proof of Theorem atlatle
StepHypRef Expression
1 simpl13 1034 . . . . . 6  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  K  e.  AtLat
)
2 atlpos 30036 . . . . . 6  |-  ( K  e.  AtLat  ->  K  e.  Poset
)
31, 2syl 16 . . . . 5  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  K  e.  Poset
)
4 atlatle.b . . . . . . 7  |-  B  =  ( Base `  K
)
5 atlatle.a . . . . . . 7  |-  A  =  ( Atoms `  K )
64, 5atbase 30024 . . . . . 6  |-  ( p  e.  A  ->  p  e.  B )
76adantl 453 . . . . 5  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  p  e.  B )
8 simpl2 961 . . . . 5  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  X  e.  B )
9 simpl3 962 . . . . 5  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  Y  e.  B )
10 atlatle.l . . . . . 6  |-  .<_  =  ( le `  K )
114, 10postr 14402 . . . . 5  |-  ( ( K  e.  Poset  /\  (
p  e.  B  /\  X  e.  B  /\  Y  e.  B )
)  ->  ( (
p  .<_  X  /\  X  .<_  Y )  ->  p  .<_  Y ) )
123, 7, 8, 9, 11syl13anc 1186 . . . 4  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( (
p  .<_  X  /\  X  .<_  Y )  ->  p  .<_  Y ) )
1312exp3acom23 1381 . . 3  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( X  .<_  Y  ->  ( p  .<_  X  ->  p  .<_  Y ) ) )
1413ralrimdva 2788 . 2  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  ->  A. p  e.  A  ( p  .<_  X  ->  p  .<_  Y ) ) )
15 ss2rab 3411 . . 3  |-  ( { p  e.  A  |  p  .<_  X }  C_  { p  e.  A  |  p  .<_  Y }  <->  A. p  e.  A  ( p  .<_  X  ->  p  .<_  Y ) )
16 simpl12 1033 . . . . . 6  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  /\  { p  e.  A  |  p  .<_  X }  C_ 
{ p  e.  A  |  p  .<_  Y }
)  ->  K  e.  CLat )
17 ssrab2 3420 . . . . . . . 8  |-  { p  e.  A  |  p  .<_  Y }  C_  A
184, 5atssbase 30025 . . . . . . . 8  |-  A  C_  B
1917, 18sstri 3349 . . . . . . 7  |-  { p  e.  A  |  p  .<_  Y }  C_  B
20 eqid 2435 . . . . . . . 8  |-  ( lub `  K )  =  ( lub `  K )
214, 10, 20lubss 14540 . . . . . . 7  |-  ( ( K  e.  CLat  /\  {
p  e.  A  |  p  .<_  Y }  C_  B  /\  { p  e.  A  |  p  .<_  X }  C_  { p  e.  A  |  p  .<_  Y } )  -> 
( ( lub `  K
) `  { p  e.  A  |  p  .<_  X } )  .<_  ( ( lub `  K
) `  { p  e.  A  |  p  .<_  Y } ) )
2219, 21mp3an2 1267 . . . . . 6  |-  ( ( K  e.  CLat  /\  {
p  e.  A  |  p  .<_  X }  C_  { p  e.  A  |  p  .<_  Y } )  ->  ( ( lub `  K ) `  {
p  e.  A  |  p  .<_  X } ) 
.<_  ( ( lub `  K
) `  { p  e.  A  |  p  .<_  Y } ) )
2316, 22sylancom 649 . . . . 5  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  /\  { p  e.  A  |  p  .<_  X }  C_ 
{ p  e.  A  |  p  .<_  Y }
)  ->  ( ( lub `  K ) `  { p  e.  A  |  p  .<_  X }
)  .<_  ( ( lub `  K ) `  {
p  e.  A  |  p  .<_  Y } ) )
2423ex 424 . . . 4  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  ->  ( { p  e.  A  |  p  .<_  X }  C_ 
{ p  e.  A  |  p  .<_  Y }  ->  ( ( lub `  K
) `  { p  e.  A  |  p  .<_  X } )  .<_  ( ( lub `  K
) `  { p  e.  A  |  p  .<_  Y } ) ) )
254, 10, 20, 5atlatmstc 30054 . . . . . 6  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  ->  (
( lub `  K
) `  { p  e.  A  |  p  .<_  X } )  =  X )
26253adant3 977 . . . . 5  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  ->  (
( lub `  K
) `  { p  e.  A  |  p  .<_  X } )  =  X )
274, 10, 20, 5atlatmstc 30054 . . . . . 6  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  Y  e.  B )  ->  (
( lub `  K
) `  { p  e.  A  |  p  .<_  Y } )  =  Y )
28273adant2 976 . . . . 5  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  ->  (
( lub `  K
) `  { p  e.  A  |  p  .<_  Y } )  =  Y )
2926, 28breq12d 4217 . . . 4  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( lub `  K
) `  { p  e.  A  |  p  .<_  X } )  .<_  ( ( lub `  K
) `  { p  e.  A  |  p  .<_  Y } )  <->  X  .<_  Y ) )
3024, 29sylibd 206 . . 3  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  ->  ( { p  e.  A  |  p  .<_  X }  C_ 
{ p  e.  A  |  p  .<_  Y }  ->  X  .<_  Y )
)
3115, 30syl5bir 210 . 2  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  ->  ( A. p  e.  A  ( p  .<_  X  ->  p  .<_  Y )  ->  X  .<_  Y ) )
3214, 31impbid 184 1  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  A. p  e.  A  ( p  .<_  X  ->  p  .<_  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697   {crab 2701    C_ wss 3312   class class class wbr 4204   ` cfv 5446   Basecbs 13461   lecple 13528   Posetcpo 14389   lubclub 14391   CLatccla 14528   OMLcoml 29910   Atomscatm 29998   AtLatcal 29999
This theorem is referenced by:  atlrelat1  30056  hlatle  30132
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-poset 14395  df-plt 14407  df-lub 14423  df-glb 14424  df-join 14425  df-meet 14426  df-p0 14460  df-lat 14467  df-clat 14529  df-oposet 29911  df-ol 29913  df-oml 29914  df-covers 30001  df-ats 30002  df-atl 30033
  Copyright terms: Public domain W3C validator