Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atle Unicode version

Theorem atle 29625
Description: Any non-zero element has an atom under it. (Contributed by NM, 28-Jun-2012.)
Hypotheses
Ref Expression
atle.b  |-  B  =  ( Base `  K
)
atle.l  |-  .<_  =  ( le `  K )
atle.z  |-  .0.  =  ( 0. `  K )
atle.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
atle  |-  ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  ->  E. p  e.  A  p  .<_  X )
Distinct variable groups:    A, p    B, p    K, p    .<_ , p    X, p    .0. , p

Proof of Theorem atle
StepHypRef Expression
1 simp1 955 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  ->  K  e.  HL )
2 hlop 29552 . . . . 5  |-  ( K  e.  HL  ->  K  e.  OP )
323ad2ant1 976 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  ->  K  e.  OP )
4 atle.b . . . . 5  |-  B  =  ( Base `  K
)
5 atle.z . . . . 5  |-  .0.  =  ( 0. `  K )
64, 5op0cl 29374 . . . 4  |-  ( K  e.  OP  ->  .0.  e.  B )
73, 6syl 15 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  ->  .0.  e.  B )
8 simp2 956 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  ->  X  e.  B )
9 simp3 957 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  ->  X  =/=  .0.  )
10 eqid 2283 . . . . . 6  |-  ( lt
`  K )  =  ( lt `  K
)
114, 10, 5opltn0 29380 . . . . 5  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  (  .0.  ( lt
`  K ) X  <-> 
X  =/=  .0.  )
)
123, 8, 11syl2anc 642 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  -> 
(  .0.  ( lt
`  K ) X  <-> 
X  =/=  .0.  )
)
139, 12mpbird 223 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  ->  .0.  ( lt `  K
) X )
14 atle.l . . . 4  |-  .<_  =  ( le `  K )
15 eqid 2283 . . . 4  |-  ( join `  K )  =  (
join `  K )
16 atle.a . . . 4  |-  A  =  ( Atoms `  K )
174, 14, 10, 15, 16hlrelat 29591 . . 3  |-  ( ( ( K  e.  HL  /\  .0.  e.  B  /\  X  e.  B )  /\  .0.  ( lt `  K ) X )  ->  E. p  e.  A  (  .0.  ( lt `  K ) (  .0.  ( join `  K
) p )  /\  (  .0.  ( join `  K
) p )  .<_  X ) )
181, 7, 8, 13, 17syl31anc 1185 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  ->  E. p  e.  A  (  .0.  ( lt `  K ) (  .0.  ( join `  K
) p )  /\  (  .0.  ( join `  K
) p )  .<_  X ) )
19 simpl1 958 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  /\  p  e.  A )  ->  K  e.  HL )
20 hlol 29551 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  OL )
2119, 20syl 15 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  /\  p  e.  A )  ->  K  e.  OL )
224, 16atbase 29479 . . . . . . . 8  |-  ( p  e.  A  ->  p  e.  B )
2322adantl 452 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  /\  p  e.  A )  ->  p  e.  B )
244, 15, 5olj02 29416 . . . . . . 7  |-  ( ( K  e.  OL  /\  p  e.  B )  ->  (  .0.  ( join `  K ) p )  =  p )
2521, 23, 24syl2anc 642 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  /\  p  e.  A )  ->  (  .0.  ( join `  K ) p )  =  p )
2625breq1d 4033 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  /\  p  e.  A )  ->  ( (  .0.  ( join `  K ) p )  .<_  X  <->  p  .<_  X ) )
2726biimpd 198 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  /\  p  e.  A )  ->  ( (  .0.  ( join `  K ) p )  .<_  X  ->  p 
.<_  X ) )
2827adantld 453 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  /\  p  e.  A )  ->  ( (  .0.  ( lt `  K ) (  .0.  ( join `  K
) p )  /\  (  .0.  ( join `  K
) p )  .<_  X )  ->  p  .<_  X ) )
2928reximdva 2655 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  -> 
( E. p  e.  A  (  .0.  ( lt `  K ) (  .0.  ( join `  K
) p )  /\  (  .0.  ( join `  K
) p )  .<_  X )  ->  E. p  e.  A  p  .<_  X ) )
3018, 29mpd 14 1  |-  ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  ->  E. p  e.  A  p  .<_  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   ltcplt 14075   joincjn 14078   0.cp0 14143   OPcops 29362   OLcol 29364   Atomscatm 29453   HLchlt 29540
This theorem is referenced by:  1cvratex  29662  llnle  29707  lhpexle  30194
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541
  Copyright terms: Public domain W3C validator