Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atle Structured version   Unicode version

Theorem atle 30307
Description: Any non-zero element has an atom under it. (Contributed by NM, 28-Jun-2012.)
Hypotheses
Ref Expression
atle.b  |-  B  =  ( Base `  K
)
atle.l  |-  .<_  =  ( le `  K )
atle.z  |-  .0.  =  ( 0. `  K )
atle.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
atle  |-  ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  ->  E. p  e.  A  p  .<_  X )
Distinct variable groups:    A, p    B, p    K, p    .<_ , p    X, p    .0. , p

Proof of Theorem atle
StepHypRef Expression
1 simp1 958 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  ->  K  e.  HL )
2 hlop 30234 . . . . 5  |-  ( K  e.  HL  ->  K  e.  OP )
323ad2ant1 979 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  ->  K  e.  OP )
4 atle.b . . . . 5  |-  B  =  ( Base `  K
)
5 atle.z . . . . 5  |-  .0.  =  ( 0. `  K )
64, 5op0cl 30056 . . . 4  |-  ( K  e.  OP  ->  .0.  e.  B )
73, 6syl 16 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  ->  .0.  e.  B )
8 simp2 959 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  ->  X  e.  B )
9 simp3 960 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  ->  X  =/=  .0.  )
10 eqid 2438 . . . . . 6  |-  ( lt
`  K )  =  ( lt `  K
)
114, 10, 5opltn0 30062 . . . . 5  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  (  .0.  ( lt
`  K ) X  <-> 
X  =/=  .0.  )
)
123, 8, 11syl2anc 644 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  -> 
(  .0.  ( lt
`  K ) X  <-> 
X  =/=  .0.  )
)
139, 12mpbird 225 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  ->  .0.  ( lt `  K
) X )
14 atle.l . . . 4  |-  .<_  =  ( le `  K )
15 eqid 2438 . . . 4  |-  ( join `  K )  =  (
join `  K )
16 atle.a . . . 4  |-  A  =  ( Atoms `  K )
174, 14, 10, 15, 16hlrelat 30273 . . 3  |-  ( ( ( K  e.  HL  /\  .0.  e.  B  /\  X  e.  B )  /\  .0.  ( lt `  K ) X )  ->  E. p  e.  A  (  .0.  ( lt `  K ) (  .0.  ( join `  K
) p )  /\  (  .0.  ( join `  K
) p )  .<_  X ) )
181, 7, 8, 13, 17syl31anc 1188 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  ->  E. p  e.  A  (  .0.  ( lt `  K ) (  .0.  ( join `  K
) p )  /\  (  .0.  ( join `  K
) p )  .<_  X ) )
19 simpl1 961 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  /\  p  e.  A )  ->  K  e.  HL )
20 hlol 30233 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  OL )
2119, 20syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  /\  p  e.  A )  ->  K  e.  OL )
224, 16atbase 30161 . . . . . . . 8  |-  ( p  e.  A  ->  p  e.  B )
2322adantl 454 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  /\  p  e.  A )  ->  p  e.  B )
244, 15, 5olj02 30098 . . . . . . 7  |-  ( ( K  e.  OL  /\  p  e.  B )  ->  (  .0.  ( join `  K ) p )  =  p )
2521, 23, 24syl2anc 644 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  /\  p  e.  A )  ->  (  .0.  ( join `  K ) p )  =  p )
2625breq1d 4225 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  /\  p  e.  A )  ->  ( (  .0.  ( join `  K ) p )  .<_  X  <->  p  .<_  X ) )
2726biimpd 200 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  /\  p  e.  A )  ->  ( (  .0.  ( join `  K ) p )  .<_  X  ->  p 
.<_  X ) )
2827adantld 455 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  /\  p  e.  A )  ->  ( (  .0.  ( lt `  K ) (  .0.  ( join `  K
) p )  /\  (  .0.  ( join `  K
) p )  .<_  X )  ->  p  .<_  X ) )
2928reximdva 2820 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  -> 
( E. p  e.  A  (  .0.  ( lt `  K ) (  .0.  ( join `  K
) p )  /\  (  .0.  ( join `  K
) p )  .<_  X )  ->  E. p  e.  A  p  .<_  X ) )
3018, 29mpd 15 1  |-  ( ( K  e.  HL  /\  X  e.  B  /\  X  =/=  .0.  )  ->  E. p  e.  A  p  .<_  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   E.wrex 2708   class class class wbr 4215   ` cfv 5457  (class class class)co 6084   Basecbs 13474   lecple 13541   ltcplt 14403   joincjn 14406   0.cp0 14471   OPcops 30044   OLcol 30046   Atomscatm 30135   HLchlt 30222
This theorem is referenced by:  1cvratex  30344  llnle  30389  lhpexle  30876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-undef 6546  df-riota 6552  df-poset 14408  df-plt 14420  df-lub 14436  df-glb 14437  df-join 14438  df-meet 14439  df-p0 14473  df-lat 14480  df-clat 14542  df-oposet 30048  df-ol 30050  df-oml 30051  df-covers 30138  df-ats 30139  df-atl 30170  df-cvlat 30194  df-hlat 30223
  Copyright terms: Public domain W3C validator