Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atmod1i1 Unicode version

Theorem atmod1i1 30046
Description: Version of modular law pmod1i 30037 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 11-May-2012.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
atmod.b  |-  B  =  ( Base `  K
)
atmod.l  |-  .<_  =  ( le `  K )
atmod.j  |-  .\/  =  ( join `  K )
atmod.m  |-  ./\  =  ( meet `  K )
atmod.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
atmod1i1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  Y )  ->  ( P  .\/  ( X  ./\  Y
) )  =  ( ( P  .\/  X
)  ./\  Y )
)

Proof of Theorem atmod1i1
StepHypRef Expression
1 simpl 443 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
) )  ->  K  e.  HL )
2 simpr2 962 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
) )  ->  X  e.  B )
3 simpr1 961 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
) )  ->  P  e.  A )
4 atmod.b . . . . . 6  |-  B  =  ( Base `  K
)
5 atmod.j . . . . . 6  |-  .\/  =  ( join `  K )
6 atmod.a . . . . . 6  |-  A  =  ( Atoms `  K )
7 eqid 2283 . . . . . 6  |-  ( pmap `  K )  =  (
pmap `  K )
8 eqid 2283 . . . . . 6  |-  ( + P `  K )  =  ( + P `  K )
94, 5, 6, 7, 8pmapjat2 30043 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  ->  ( ( pmap `  K
) `  ( P  .\/  X ) )  =  ( ( ( pmap `  K ) `  P
) ( + P `  K ) ( (
pmap `  K ) `  X ) ) )
101, 2, 3, 9syl3anc 1182 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( pmap `  K ) `  ( P  .\/  X
) )  =  ( ( ( pmap `  K
) `  P )
( + P `  K ) ( (
pmap `  K ) `  X ) ) )
114, 6atbase 29479 . . . . 5  |-  ( P  e.  A  ->  P  e.  B )
12 atmod.l . . . . . 6  |-  .<_  =  ( le `  K )
13 atmod.m . . . . . 6  |-  ./\  =  ( meet `  K )
144, 12, 5, 13, 7, 8hlmod1i 30045 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  B  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( P  .<_  Y  /\  ( ( pmap `  K
) `  ( P  .\/  X ) )  =  ( ( ( pmap `  K ) `  P
) ( + P `  K ) ( (
pmap `  K ) `  X ) ) )  ->  ( ( P 
.\/  X )  ./\  Y )  =  ( P 
.\/  ( X  ./\  Y ) ) ) )
1511, 14syl3anr1 1234 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( P  .<_  Y  /\  ( ( pmap `  K
) `  ( P  .\/  X ) )  =  ( ( ( pmap `  K ) `  P
) ( + P `  K ) ( (
pmap `  K ) `  X ) ) )  ->  ( ( P 
.\/  X )  ./\  Y )  =  ( P 
.\/  ( X  ./\  Y ) ) ) )
1610, 15mpan2d 655 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( P  .<_  Y  ->  (
( P  .\/  X
)  ./\  Y )  =  ( P  .\/  ( X  ./\  Y ) ) ) )
17163impia 1148 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  Y )  ->  ( ( P  .\/  X )  ./\  Y )  =  ( P 
.\/  ( X  ./\  Y ) ) )
1817eqcomd 2288 1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  Y )  ->  ( P  .\/  ( X  ./\  Y
) )  =  ( ( P  .\/  X
)  ./\  Y )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   joincjn 14078   meetcmee 14079   Atomscatm 29453   HLchlt 29540   pmapcpmap 29686   + Pcpadd 29984
This theorem is referenced by:  atmod1i1m  30047  atmod2i1  30050  atmod3i1  30053  atmod4i1  30055  dalawlem6  30065  dalawlem11  30070  dalawlem12  30071  cdleme11g  30454  cdlemednpq  30488  cdleme20c  30500  cdleme22e  30533  cdleme22eALTN  30534  cdleme35c  30640
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-psubsp 29692  df-pmap 29693  df-padd 29985
  Copyright terms: Public domain W3C validator