Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atmod4i2 Unicode version

Theorem atmod4i2 29983
Description: Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 4-Jun-2012.) (Revised by Mario Carneiro, 10-Mar-2013.)
Hypotheses
Ref Expression
atmod.b  |-  B  =  ( Base `  K
)
atmod.l  |-  .<_  =  ( le `  K )
atmod.j  |-  .\/  =  ( join `  K )
atmod.m  |-  ./\  =  ( meet `  K )
atmod.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
atmod4i2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  X  .<_  Y )  ->  ( ( P  ./\  Y )  .\/  X )  =  ( ( P  .\/  X ) 
./\  Y ) )

Proof of Theorem atmod4i2
StepHypRef Expression
1 hllat 29480 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
213ad2ant1 978 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  X  .<_  Y )  ->  K  e.  Lat )
3 simp21 990 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  X  .<_  Y )  ->  P  e.  A )
4 atmod.b . . . . . 6  |-  B  =  ( Base `  K
)
5 atmod.a . . . . . 6  |-  A  =  ( Atoms `  K )
64, 5atbase 29406 . . . . 5  |-  ( P  e.  A  ->  P  e.  B )
73, 6syl 16 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  X  .<_  Y )  ->  P  e.  B )
8 simp23 992 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  X  .<_  Y )  ->  Y  e.  B )
9 atmod.m . . . . 5  |-  ./\  =  ( meet `  K )
104, 9latmcl 14409 . . . 4  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  Y  e.  B )  ->  ( P  ./\  Y
)  e.  B )
112, 7, 8, 10syl3anc 1184 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  X  .<_  Y )  ->  ( P  ./\ 
Y )  e.  B
)
12 simp22 991 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  X  .<_  Y )  ->  X  e.  B )
13 atmod.j . . . 4  |-  .\/  =  ( join `  K )
144, 13latjcom 14417 . . 3  |-  ( ( K  e.  Lat  /\  ( P  ./\  Y )  e.  B  /\  X  e.  B )  ->  (
( P  ./\  Y
)  .\/  X )  =  ( X  .\/  ( P  ./\  Y ) ) )
152, 11, 12, 14syl3anc 1184 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  X  .<_  Y )  ->  ( ( P  ./\  Y )  .\/  X )  =  ( X 
.\/  ( P  ./\  Y ) ) )
16 atmod.l . . 3  |-  .<_  =  ( le `  K )
174, 16, 13, 9, 5atmod1i2 29975 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  X  .<_  Y )  ->  ( X  .\/  ( P  ./\  Y
) )  =  ( ( X  .\/  P
)  ./\  Y )
)
184, 13latjcom 14417 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  P  e.  B )  ->  ( X  .\/  P
)  =  ( P 
.\/  X ) )
192, 12, 7, 18syl3anc 1184 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  X  .<_  Y )  ->  ( X  .\/  P )  =  ( P  .\/  X ) )
2019oveq1d 6037 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  X  .<_  Y )  ->  ( ( X  .\/  P )  ./\  Y )  =  ( ( P  .\/  X ) 
./\  Y ) )
2115, 17, 203eqtrd 2425 1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  X  .<_  Y )  ->  ( ( P  ./\  Y )  .\/  X )  =  ( ( P  .\/  X ) 
./\  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1649    e. wcel 1717   class class class wbr 4155   ` cfv 5396  (class class class)co 6022   Basecbs 13398   lecple 13465   joincjn 14330   meetcmee 14331   Latclat 14403   Atomscatm 29380   HLchlt 29467
This theorem is referenced by:  lhp2at0  30148  lhpelim  30153  cdleme2  30344  cdleme20y  30418  cdleme35d  30568  cdlemeg46frv  30641  cdlemg2fv2  30716  cdlemg2m  30720  cdlemg10bALTN  30752  cdlemh2  30932  cdlemk9  30955  cdlemk9bN  30956
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-iun 4039  df-iin 4040  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-undef 6481  df-riota 6487  df-poset 14332  df-plt 14344  df-lub 14360  df-glb 14361  df-join 14362  df-meet 14363  df-p0 14397  df-lat 14404  df-clat 14466  df-oposet 29293  df-ol 29295  df-oml 29296  df-covers 29383  df-ats 29384  df-atl 29415  df-cvlat 29439  df-hlat 29468  df-psubsp 29619  df-pmap 29620  df-padd 29912
  Copyright terms: Public domain W3C validator