Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atpointN Unicode version

Theorem atpointN 30554
Description: The singleton of an atom is a point. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
ispoint.a  |-  A  =  ( Atoms `  K )
ispoint.p  |-  P  =  ( Points `  K )
Assertion
Ref Expression
atpointN  |-  ( ( K  e.  D  /\  X  e.  A )  ->  { X }  e.  P )

Proof of Theorem atpointN
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2296 . . . 4  |-  { X }  =  { X }
2 sneq 3664 . . . . . 6  |-  ( x  =  X  ->  { x }  =  { X } )
32eqeq2d 2307 . . . . 5  |-  ( x  =  X  ->  ( { X }  =  {
x }  <->  { X }  =  { X } ) )
43rspcev 2897 . . . 4  |-  ( ( X  e.  A  /\  { X }  =  { X } )  ->  E. x  e.  A  { X }  =  { x } )
51, 4mpan2 652 . . 3  |-  ( X  e.  A  ->  E. x  e.  A  { X }  =  { x } )
65adantl 452 . 2  |-  ( ( K  e.  D  /\  X  e.  A )  ->  E. x  e.  A  { X }  =  {
x } )
7 ispoint.a . . . 4  |-  A  =  ( Atoms `  K )
8 ispoint.p . . . 4  |-  P  =  ( Points `  K )
97, 8ispointN 30553 . . 3  |-  ( K  e.  D  ->  ( { X }  e.  P  <->  E. x  e.  A  { X }  =  {
x } ) )
109adantr 451 . 2  |-  ( ( K  e.  D  /\  X  e.  A )  ->  ( { X }  e.  P  <->  E. x  e.  A  { X }  =  {
x } ) )
116, 10mpbird 223 1  |-  ( ( K  e.  D  /\  X  e.  A )  ->  { X }  e.  P )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   E.wrex 2557   {csn 3653   ` cfv 5271   Atomscatm 30075   PointscpointsN 30306
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-pointsN 30313
  Copyright terms: Public domain W3C validator